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EXECUTIVE SUMMARY

1. GENERAL STRATEGY

The overall program embraces property profiles. manufacturing. design
and sensor development (Fig. 1) consistent with a concurrent engineering
philosophy. For this purpose. the program has created networks with the
other composites activities. Manufacturing research on MMCs is strongly
coupled with the 3M Model Factory and with the DARPA consolidation team.
Major links with Corning and SEP are being established for CMC
manufacturing. Design Team activities are coordinated by exchange visits, in
February/March, to Pratt and Whitney, General Electric, McDonnell
Douglas and Corning. Other visits and exchanges are being discussed.
These visits serve both as a critique of the research plan and as a means of
disseminating the knowledge acquired in 1992.

The program strategy concerned with design attempts to provide a
balance of effort between properties and design by having studies of
mechanisms and property profiles, which intersect with a focused activity
devoted to design problems (Fig. 2). The latter includes two foci, one on
MMCs and one on CMCs. Each focus reflects differences in the property
emphases required for design. The intersections with the mechanism
studies ensure that commonalties in behavior continue to be identified. and

also facilitate the efficient transfer of models between MMCs and CMCs.
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2. PROPERTY PROFILES

Each research activity concerned with properties begins with
experiments that identify the principal property-controlling phenomena.
Models are then developed that relate the physical response to constituent
properties. These models, when validated, provide the constitutive laws
required for calculating stress redistribution, failure and damage
progression. They also provide a solid physics and mechanics
understanding, which can be used to judge the effectiveness of the

simplified procedures needed for design purposes.
2.1 Fatigue

Studies of the propagation of dominant mode I fatigue cracks from
notches in MMCs, including the role of fiber bridging and fiber failure, have
been comprehensively addressed (Zok, McMeeking). Software programs that
include these effects have been developed. These are being transferred to
Pratt and Whitney and KAMAN Sciences. The effects of thermal cycling on
crack growth in MMCs have also been modelled (McMeeking). The resuits
highlight the opposing effects of cycling on matrix crack growth and fiber
failure (the fatigue threshold), when thermal cycles are superposed onto load
cycles. Notably, matrix crack growth is enhanced by out-of-phase
thermomechanical cycling, but fiber failure is suppressed (and vice versa for
in-phase cycling). Experimental studies that examine these predictions are
planned (Zok).

Studies have also been conducted on systems that exhibit multiple
matrix cracking (Zok). The tensile stress-strain behavior of composites

containing such cracks is analogous to the behavior of unidirectional CMCs




under monotonic tensile loading. As a result, models developed to describe
the tensile response of the CMCs have found utility in describing the MMCs.
However, two important differences in the two classes of composite have
been identified and are presently being addressed. The first deals with the
nature of the crack patterns. In the CMCs, the cracks are more or less
uniformly spaced and generally span across the entire composite section. In
contrast. the MMCs exhibit a broader distribution of crack sizes, many of
which are short compared with the specimen dimensions. Methodologies for
measurement and interpretation of crack densities in MMCs are being
developed. The second problem deals with degradation in the interfacial
sliding properties with cyclic sliding in the MMCs. Such degradation is
presently being studied using fiber push-out tests in fatigued specimens.
Thermal fatigue studies on MMCs subject to transverse loading have
been performed and have established the conditions that allow shakedown
(Leckie). The shakedown range is found to be strongly influenced by the
extent of matrix creep, which defines a temperature limitation on the use of
the material. The eventual outcome of this activity would be the
specification of parameters that ensure shakedown and avoid ratcheting.
The next challenge for MMCs concern the quantification of transitions
in fatigue behawvior, especially those found at higner temperatures. These
include multiple matrix cracking and shear band formation. Experimental
studies are in progress which will be used to establish a mechanism map.
The map, when developed, would explicitly identify the transitions (Z¢k). The
analogous behavior found in CMCs will facilitate this development. Other
high temperature phenomena to be explored include changes in the
interfacial sliding behavior due to both relaxations in the thermal residual

stresses and the growth of reaction products near the fiber-matrix interface.
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Fatigue damage studies on 2-D CMCs will focus on interface and fiber
degradation phenomena,. especially at elevated temperatures (Evans, Zok).
Cyvclic loading into the stress range at which matrix cracks exist is known to
modify the interface sliding stress and may weaken the fibers. These
degradation effects can be distinguished., because they change the
hysteresis loop and reduce the UTS, respectively. Experiments that probe
these material responses are planned. In addition, models that include the
influence of cyclic fiber failure and pull-out on fatigue damage will be

developed (Suo).
2.2 Matrix Cracking

Models of the plastic strain and modulus changes caused by various
modes of matrix cracking have been developed. These solutions have
provided a rationale for experimental studies on the tensile and shear
behavior of CMCs and on the fatigue of MMCs (Hutchinson, Zok, Evans,
Suo, Budiansky, McMeeking). The information has been used in two distinct
ways. (i) Test methodologies have been devised that relate
stress/displacement measurements to constituent properties (Table I).
(i} Stress/strain curves and matrix crack evolution have been simulated for
specific combinations of constituent properties.

The devciopment of the procedures and their implementation are still in
progress. Independent solutions have been established for matrix cracks in
0° plies and 90° plies upon tensile loading. The former has been
experimentally validated on 1-D materials (SiC/SiC and SiC/CAS).
Measurements of plastic strain, hysteresis loops and crack densities have

been checked against the models for consistency.




TABLE 1

Relevant Constituent Properties and Measurement Methods

CONSTITUENT PROPERTY

MEASUREMENT

Sliding Stress, T

Pull-Out Length, h
Saturation Crack Spacing, 1
Hysteresis Loop. 0 € 1,2

Unloading Modulus, Ep

Characteristic Strength, S¢, m

Fracture Mirrors

Ultimate Strength, S

Misfit Strain, € (q)

Bilayer Distortion
Permanent Strain, €p

Residual Crack Opening

Matrix Fracture Energy, I'm

Monolithic Material
Saturation Crack Spacing, 1s

Matrix Cracking Stress, Omc

Debond Energy, T}

Permanent Strain, €p

Residual Crack Opening




The next challenge is to couple the models together in order to simulate
the evolution of matrix cracks in 2-D materials, subject to tensile loading
(Hutchinson, Budiansky). Related effects on the ultimate tensile strength
caused by stress concentrations in the fibers in the presence of matrix
cracks. would also be evaluated. Experimental measurements oi
stress/strain behavior in 2-D CMCs, with concurrer'lt observations of matrix
crack evolution. would be used to guide and validate such models (Evans,

Kedward).
2.3 Constitutive Equations

Constitutive equations provide the link between material behavior at
the meso-scale and the performance of engineering components. The
equations can be established from the results of uniaxial and transverse
tensile tests together with in-plane shear loading. For a complete
formulation, which describes accurately the growth ot failure mechanisms
and the conditions of failure at the meso-scale, it is also necessary to
perform calculations which are valid at the micro-scale.

These procedures have been completed for metal-matrix composites
(Jansson, Leckie), and the resulting constitutive equations are operational
in the ABAQUS finite element code. The behavior of simple panels
penetrated by circular holes have been studied and the results await
comparison with experiments which are planned for the coming year. The
constitutive equations are formulated in terms of state variables which
include the hardening tensors and damage state variables which describe
debonding at the interface and void growth in the matrix. The format is
sufficiently general to allow the inclusion of failure mechanisms such as

environmental attack as the appropriate understanding is available. For




example, the effect of matrix and fiber creep mechanisms (Aravas) have also
been introduced into ABAQUS, and it is proposed to extend the creep
conditions to include the effects of variable loading and temperature.

A similar approach has been taken towards the modulus of CMCs. In
this case, efforts have been made to include the influence of matrix
cracking, in-plane shearing and fiber breakage. The latter consideration is
based on the global load sharing model (Hayhurst). The equations are also
available in ABAQUS. At present, matrix cracking is introduced by
assuming a matrix stress accompanied by an increase of strain. However,
based on the more recent understanding of the growth of matrix cracks
(above) it is intended to introduce these mechanisms into the constitutive

equations for CMCs.
2.4 Creep

The emphases of the creep investigations have been on the anisotropic
characteristics of unidirectional layers in which the fibers are elastic. but
the matrix creeps. Experiments and models of the longitudinal creep
properties of such materials have been initiated (McMeeking, Leckie, Evans,
Zok, Aravas). The critical issues in this orientation concern the incidence of
fiber failure and the subsequent sliding response of the interface. A
modelling effort has established an approach that allows the stochastic
evolution of fiber failure to occur as stress is transferred onto the fibers by
matrix creep (McMeeking). This approach leads to creep rates with a large
power law exponent. Various attempts are underway to incorporate the
interface sliding initiated by fiber breaks and to introduce sliding into the
creep rate formulation. Experiments being performed on unidirectional Ti

matrix materials are examining the incidence of fiber failures on the creep




deformation (Evans, Leckie, Zok}. These results will guide the modelling
effort concerned with interface sliding effects. Insight will also be gained
about fiber failure stochastics during creep, especially differences from room
temperature behavior.

The transverse creep properties are expected to have direct analogies
with composite deformation for a power law hardening matrix (Section 2 3).
In particular, the same effects of debonding and matrix damages arise and
can be incorporated in an equivalent manner (Leckie, Aravas). Testing is
being performed on Ti MMCs and on SiC/CAS to validate the models.

Experiments on Ti-matrix 0°/90° cross-ply composites are planned.
Creep models appropriate to cross-ply materials will be developed by
combining those corresponding to the unidirectional materials in the
longitudinal and transverse orientations, using a rule-of-mixtures approach.
Such an approach is expected to be adequate for loadings in which the
principal stresses coincide with the fiber axes. Alternate approaches will be
sought to describe the material response in other orientations.

Some CMCs contain fibers that creep more extensively than the matrix.
This creep deformation has been found to elevate the stress in the matrix
and cause time dependent evolution of matrix cracks. This coupled process
results in continuous creep deformation with relatively low creep ductility.
Experiments on such materials are continuing (Evans, Leckie) and a
modelling effort will be initiated {(Suo). The models would include load
transfer into the matrix by creeping fibers, with sliding interfaces. leading to
enhanced matrix cracking.
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2.5 Tensile Strength

The ultimate strength (UTS) of both CMCs and MMCs (as well as fatigue
and creep thresholds) is dominated by fiber failure. With the global load
sharing (GLS) concept of fiber failure now well established, the recent
emphasis has been on defining the constituent properties needed to ensure
GLS. The approach has been to perform local load sharing calculations and
then compare experimental UTS data with the GLS predictions (Curtin,
Evans, Leckie). The situation is unresolved. However, initial calculations on
CMCs (Curtin) and MMCs (Evans) have provided some insight. Two key
remaining issues concern the magnitude of the stress concentration in
intact fibers caused by matrix cracks and the role of fiber pull-out in
alleviating those stresses. Calculations of these effects are planned
(Budiansky, Suo).

Degradation of the fiber strength upon either high temperature (creep)
testing, atmospheric exposure, or fatigue are other topics of interest.
Rupture testing performed under these conditions will be assessed in terms

of degradation in fiber properties.

3. DESIGN TEAMS
3.1 The Approach

The overall philosophy of the design effort is to eventually combine
material models, with a materials selector, and a data base, within a unified
software package (Prinz). One example of a composites data base is that
developed for MMCs by KAMAN Sciences, which forms the basis for a

potential collaboration. The materials selector has already been developed

11




for monolithic materials {Ashby) and is available for purchase. This selector
requires expansion to incorporate phenomena that have special significance
for high temperature composites, including creep and thermal fatigue. These
new features will be developed and included in the advanced selector
software (Ashby).

The modelling approach is illustrated in Table II. Failure mechanisms
and their effect on material behavior have been introduced into constitutive
equations. The stress, strain and damage fields which develop in
components during the cycles of loading and temperature can then be
computed. Experiments shall be performed on simple components such as
holes in plates, and comparison made with the computational predictions.
Since constitutive equations are modeled using the results of coupon tests,
it is likely that additional failure modes shall come to light during
component testing. These mechanisms shall be studied and the appropriate
mechanics developed so that their influence is correctly factored into the
constitutive equations. In this way, increased confidence in the reliability of
the constitutive equations can be established in a systematic way.

In practice, it is most probable that the constitutive equations are too
complex for application at the creative level of the design process. It is then
that simple but reliable procedures are of greater use. Some success has
been achieved in this regard for MMCs subjected to cyclic mechanical and
thermal loading (Jansson, Ponter, Leckie), as well as for strength
calculations of CMC panels penetrated by holes (Suo) and the fatigue of
MMCs {Zok, McMeeking). In all cases simplifications are introduced after a
complete and reliable analysis has been completed which provides a

standard against which the effects of simplification can be assessed.
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3.2 Ceramic Matrix Composite Design

The design effort on CMCs will have its major focus on pin-loaded holes
used for attachments (Fig. 3). A smaller activity, expected to expand in
1994, will address delamination cracking. The hole design includes several
related topics. Each topic is concerned with aspects of constitutive law
development (Table III), highlighted during the study group. Combined
experimental and modelling efforts on the tensile properties of CMCs have
established that the plastic strains are dominated by matrix cracks in the 0°
plies. The matrix cracking models developed in the program demonstrate
that these strains are governed by four independent constituent properties
[(Table I} 1, T, 2 and I'm) which combine and interrelate through five non-
dimensional parameters (Table IV). This modelling background suggests a
concept for using model-based knowledge to develop constitutive laws. The
following steps are involved (Table Il). (i) A model-based methodology for
inferring the constituent properties of unidirectional CMCs from
macroscopic stress/strain behavior has been devised and is being
experimentally tested on a range of materials (Evans). (if) Upon validation,
the models would allow stress/strain curves to be simulated (Hutchinson).
This capability would facilitate a sensitivity study to be performed, in order
to determine the minimum number of independent parameters that
adequately represent the constitutive law. A strictly empirical law would
require 3 parameters (yield strength, hardening rate and unloading
modulus). Consequently, the objective might be to seek 3 combinations of
the 4 constituent properties. (iii) Experiments would be performed and
models developed that establish the matrix cracking sequence in 2-D

materials (Hutchinson, Evans, Kedward). These would be conducted on

14




l DESIGN PROBLEM IN CMC's l

Design of Holes in Nozzles / Combustors

A
B o0 gl
l)::h‘ T
N
==

N\
—ty

N—ﬂf,

o
S/
1
|
1
\hm—‘

1=

Splitting

Issues

] £ 4 Tensile Rupture
Crushing
Splitting

A e ! Design Variables I
D

Hole Size
\ Ho'e Spacing
- Fiber Architecture
Splitting Material Choice
New Concepts

g
prt]

X

»

--_-NF'F'—‘—‘rrr

Fig. 3

Evans ONR»1.92-amik-D300618- 1




Tensile and
in-Plane
. Shear
Tensile Measurements
Measurements
1-D 2-D
®&———& Constitutive 9> Constitutive >
Laws Laws
Matrix
Cracking
Models &-330{
odels
AvA
Stress
Redistribution
Numerical
Calculations
Table 111
Design Strategy for CMCs

Evane URK193-armk-D4 199831




4

TABLE IV

Summary of Non-Dimensional Coefficients

[F/(a- f)]z (Ef EL /Efn)(ao 1/RS,), Flaw Index for Bridging
(ao / H) (SP / EL), Flaw Index for Pull-Out

T (1-7)? E;Ep / f 1 Ey R, Crack Spacing Index

by (1-a;f)° Rc_rg /4dtE_, f2, Hysteresis Index

Gp /Em Q, Misfit Index

610y, f2 E, /(1- f)EZ RE_, Matrix Cracking Index

E, f Q/Ey (1-v), Residual Stress Index

(1/¢;Q){T; /E R, Debond Index
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CMCs with a range of different constituent properties and fiber
architectures. The plastic strains would be related to constituent properties
by adapting the 1-D uodels.

The in-plane shear behavior will be characterized by performing
experiments and developing models of matrix cracking that govern the
plastic shear strain in 2-D CMC (Evans, Hutchinson, Bao). The information
will be used to establish the constitutive laws for in-plane shear, as well as
interlaminar shear. For continuity of interpolation between tension and
shear, the shear models will include the same constituent properties as
those used to represent the tensile behavior.

The model-based constitutive laws, based on matrix damage, will be
built into a CDM (continuum damage mechanics) formulation, compatible
with finite element codes (Hayhurst). Computations will be performed to
explore stress redistribution around holes and other strain concentration
sites. The calculations will establish visualizations of stress evolution that
can be compared with experimental measurements performed using the
SPATE method, as well as by Moiré interferometry (Mackin, Evans). These
experiments will be on specimens with notches and holes, loaded in tension.
The comparisons between the measured and calculated stress patterns will
represent the ultimate validation of the constitutive law. The composite
codes, when validated, will be made available to industry.

Some preliminary experimental work will be performed on pin-loaded
holes. Damage patterns will be monitored and stress redistribution effects
assessed using SPATE (Kedward, Evans, Mackin). These experiments will be
conducted on SiC/CAS and SiC/C. The results will provide the focus for

future CDM computations, based on the constitutive law for the material.
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Smaller scale activities will involve basic aspects of stress redistribution
around holes caused by fatigue and creep damage, using the experience
gained from the matrix cracking studies. Some experimental measurements
of these effects will be performed using SPATE (Zok, Evans).

Some delamination crack growth measurements and calculations are
also envisaged (Ashby, Kedward, Hutchinson). Cantilever beam and
C-specimens will be used for this purpose (Fig. 4). During such tests, crack
growth, multiple cracking and stiffness changes will be addressed. Models of
bridging by inclined fibers will be developed (Ashby) and used for
interpretation.

3.3 Metal Matrix Composite Design

The 3D constitutive equations for MMCs are now available for use in
the ABAQUS finite element code, and the immediate task is to use these
equations to predict the behavior of representative components (Leckie). One
such system is a ring-type structure which is being studied together with
Pratt and Whitney. Clearly no experimental verification is possible with a
component of this scale, but the experience of Pratt and Whitney shall
provide invaluable input on the effectiveness of the calculations. A
component sufficiently simple to be tested is the panel penetrated by holes.
The holes shall be both unloaded and loaded (Jansson), and it is expected to
include the effects of cyclic mechanical and thermal loading.

It is proposed to develop simplified procedures which are based on
shakedown procedures (Jansson, Leckie). Demonstrations have already
been made of the effectiveness of the Gohfeld method (which uses only
simple calculations) in representing the behavior of MMCs subjected to

cyclic thermal loading.
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During the complex histories of stress and temperature, it is known
that the matrix-fiber interface properties change. Fatigue loading (Zok) is
know to decrease the interface sliding stress. Transverse creep appears to
cause matrix-fiber debonding (Jansson), which might result in loss of the
ability to transfer stress between matrix and fiber. It is intended to study
this effect of transverse creep on the integrity of the longitudinal strength of
the material by performing tests on paneis which shall allow rotation of the
stress fields. A good understanding now exists of the fatigue properties of
MMCs (Zok). It is intended to extend the ideas developed from earlier
theoretical studies (McMeeking, Evans) to include cyclic thermal effects and

experimental progranis on holes in plates.

4. MANUFACTURING

The activities in processing and manufacturing have had the following

foci:
* Matrix development to address specific requirements identified by the
design problems, particularly first matrix cracking in CMCs (Lange)
and creep strengthening in MMC/IMCs (Levi, Lucas).

* Hybrid architectures which offer possible solutions to environmental
degradation and thermal shock problems (Evans, Lange, Leckie, Levi,
Yang, Zok).

e Software development that predicts and controls fiber damage and
interface properties during densification (Wadley).

* Processing techniques to generate model MMC sub-elements (Leckie,
Levi, Yang).

21




4.1 Metal Matrix Composites

Work on MMC matrix develcpment has focused on dispersion
strengthening approaches to increase the transverse tensile and creep
strength of 1-D and 2-D fiber architectures. The initial work has emphasized
a model system, Cu/Al2O3, wherein dispersoids are produced by internal
oxidation of a dilute Cu-Al alloy deposited by PVD onto sapphire fibers.
These are subsequently consolidated by HIP'ing. Specimens with fiber
volume fractions of 0.3 << 0.5 and 2-3% 7Y-Alp03 dispersoids (~ 20 nm in
size) have been produced in this manner and will be tested to assess their
transverse creep behavior. The new emphasis will be on higher temperature
matrices based on TiB dispersoids in Ti-(Cr/Mo)-B alloys (Levi). Initial
solidification studies have demonstrated the potential of these materials as
in-situ composites. Efforts are underway to develop sputtering capabilities to
implement this concept.

Fiber damage during densification of composite prepregs generated by
plasma-spray (GE) and PVD (3M) have also been emphasized (Wadley).
Interdiffusion studies coupled with push-out tests have been used to study
the evolution of reaction layers in Ti/SIC composites and their effect on the
relevant interfacial properties as a function of process parai..eters.
Additional efforts under other programs have {»>cused on developing
predictive models for fiber breakage during densification. The interdiffusion
and breakage models are being incorporated into software that predicts
pressure-temperature paths, which simultaneously minimize fiber damage
and control the interface properties.

The feasibility of producing MMC sub-elements consisting of fiber
reinforced rings (1-D) and tubes {2-D) has been demonstrated by using
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liquid metal infiltration of Al alloy matrices (Levi). These are presently
undergoing testing in combined tension/torsion modes. Future efforts will
be directed toward extending the technique to other shapes (e.g.. plates with
reinforced holes), as well as devising methods to modify the (currently
strong) interfaces. The identification of methods that provide the appropriate
interfacial debonding/sliding characteristics should enable the use of these

composites as model systems for higher temperature MMCs, such as Ti.
4.2 Intermetallic Matrix Composites

The focus of the IMC processing activities has been on the synthesis of
MoSia/B-SiCp composites by solidification processing. These materials are of
interest as potentia. matrices for fiber composites. Significant progress was
made in the elucidation of the relevant Mo-Si-C phase equilibria, the growth
mechanisms of SiC from the melt and their impact on reinforcement
morphology, as well as the orientation relationships between matrix and
reinforcements, and the interfacial structure. An amorphous C layer, <5 nm
thick, was found at the MoSis/SiC interface in the as cast condition, and
persisted after 12 h heat treatments at 1500°C. This interfacial layer has
been reproduced in a-SiCp/(MoSis + C) composites produced by powder
metallurgy techniques and was found to exhibit promising debonding and
pull-out behavior during fracture (Levi). Future efforts are aimed at

implementing this in-situ coating concept in a-SiC fiber composites.
4.3 Ceramic Matrix Composites

The processing issues for creating CMCs with high matrix strength
continue to be explored (Lange, Evans). The basic concept is to create a

strong ceramic matrix framework within a fiber preform, by means of slurry
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infiltration followed by heat treatment. This strong framework would then be
infiltrated by a polymer precursor and pyrolyzed to further densify the
matrix. It has been demonstrated that strong matrices of SizN4 can be
produced using this approach (Lange). Further work will address

relationships between matrix strength and microstructure (Lange, Evans).
4.4 Hybrids

These activities cover materials consisting of thin monolithic ceramic
layers alternatir  ith layers containing high strength fibers bonded by a
glass or metallic binder. The primary motivation behind this concept is the
potential for manufacturing shapes that have a high resistance to
environmental degradation and also have good thermal shock resistance.
The concept has been demonstrated using alumina plates and graphite
reinforced polymer prepregs (Lange). The availability of glass-ceramic
bonded SiCs prepregs and tape-cast SiC plates has facilitated the extension
of this technique to high temperature systems (Lange). Future assessment
will address new crack control concepts. These concepts would prevent
damage from propagating into the fiber reinforced layers. especially upon
thermal loading {Zok, Lange). If successful, this concept would allow the
development of hybrid CMCs which impart resistance to environmental
degradation, as well as high thermal strain tolerance.

Preliminary work has been performed on laminates consisting of
alumina plates and sapphire-fiber reinforced Cu monotapes (Levi). The latter
are produced by deposition of Cu on individual fibers which are
subsequently aligned and bonded by hot pressing between two Cu foils.

After suitable surface preparation, the alumina/monotape assemblies are
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bonded by hot pressing. Future work is aimed at implementing the concept

with Ni based alloys.

5. SENSORS

The principal challenge being addressed is the non-destructive and
non-evasive measurement of stresses in composites (Clarke, Wadley). The
motivation is to make detailed measurements of stresses in components for
incorporation into evolving design models, as well as validation of the stress
distributions computed by finite element methods. A major emphasis has
been placed on measuring the residual stresses in sapphire fibers in various
matrices, using the recently developed technique of optical fluorescence
spectroscopy. These measurements have provided data on the distribution
of residual thermal stresses in“the fiber reinforcement, as a function of
depth below the surface. This approach will be extended, in conjunction
with finite element modelling (Hutchinson), to measure the stresses during
the process of fiber pull-out from a variety of metal and ceramic matrices.
Initial experiments indicate that such in-situ measurements are feasible.

The technique will also be applied to the measurement of the stresses
in sapphire fibers located in the vicinity of pin-loaded holes in order to
understand the manner in which the stresses redistribute during loading. It
is anticipated that this measurement will provide information about the
detailed fiber loadings and also about the stresses that cause debonding of
the fibers from the matrix. Moreover, in support of the activities on thermal
ratcheting, the redistribution of stresses with thermal cycling will be
established. This will be accomplished by using the fluorescence technique
as well as Moiré interferometry, based on lithographically defined features.
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ABSTRACT

The mode fatigue crack growth behavior of a fiber reinforced metal matrix
composite with weak interfaces is examined. In the longitudinal orientation, matrix
cracks initially grow witk minimal fiber failure. The tractions exerted by the intact
fibers shield the crack tip from the applied stress and reduce the rate of crack growth
relative to that in the unreinforced matrix alloy. iIn some instances, further growth is
accompanied by fiber failure and a concomitant loss in crack tip shielding. The
measurements are compared with model predictions, incorporating the intrinsic fatigue
properties of the matrix and the shielding contributions derived from the intact fibers.
The magnitude of the interface sliding stress inferred from the comparisons between
experiment and theory is found to be in broad agreement with values measured using
alternate techniques. The results also indicate that the interface sliding stress degrades
with cyclic sliding, an effect yet to be incorporated in the model. In contrast, the
transverse fatigue properties are found to be inferior to those of the monolithic matrix

alloy, a consequence of the poor fatigue resistance of the fiber/matrix interface.
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1. INTRODUCTION

Fiber reinforced metal matrix composites exhibit a variety of damage modes
under cyclic loading conditions!-. In the presence of holes or notches, the damage may
involve the propagation of a single mode I matrix crack perpendicular to the fibersl-3.
Provided the fiber/matrix interface is sufficiently weak, cracking initially occurs
without fiber failure. The tractions exerted on the crack face by the intact fibers shield
the crack tip from the remote stress and thus reduce the crack growth rate relative to
that of the matrix alone. Further growth may lead to fiber failure, both in the crack
wake and ahead of the crack tip, leading to an acceleration in crack growth.
Alternatively, the damage may be in the form of a process zone comprised of multiple
mode I cracks?. The mechanics of this process again involves issues of crack bridging
and fiber failure, as well «s an understanding of the role of the interactions between
cracks. In yet other instances, failure occurs by splitting parallel to the fiber direction4.
The splitting mode is enhanced by the application of bending moments, as exemplified
by tests conducted on compact tension specimens®.

A comprehensive understanding of the material parameters governing the
various damage modes and the role of the damage in fatigue lifetime is not yet
available. However, the recognition that the damage modes have close analogies in
fiber reinforced ceramic matrix composites (CMCs) under monotonic loading conditions
suggests that the existing mechanics (developed for CMCs) may have applicability to
MMCs, provided appropriate modifications are made to account for the cyclic nature of
the imposed stress. The present article examines one of these fatigue mechanisms
(mode I matrix cracking), and attempts to assess the utility of the mechanics
formulismsé-8 in describing fatigue crack growth. The study compares experimental
measurements with model predictions, incorporating the effects of fiber bridging. The

role of fiber failure in the fatigue cracking process is also examined.
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The paper is organized in the following way. First, a summary of the mechanics
of crack bridging by frictionally c¢ynstrained fibers under cyclic loading is presented
(Section 2). The mechanics identifies the important material properties and loading
parameters governing fatigue, and provides guidance for the design and interpretation
of the experiments. This is followed by a description of the materials and experimental
methods employed (Section 3), and a summary of the measurements and observations,

along with comparisons with model predictions (Sections 4 and 5).

2. MECHANICS OF CRACK BRIDGING
2.1  Shielding Effects

The mechanics of crack bridging by frictionally constrained fibers in brittle
matrix composites under monotonic tensile loading has been well established®-11. A
fundamental assumption in the analysis is that the driving force for crack extension is
the crack tip stress intensity factor, Ky, as governed by the remote stress and the tractions
acting in the crack wake. Equating K; with the composite fracture toughness (which
usually scales with the fracture toughness of the matrix itself), gives the stress required
for matrix cracking in terms of the component geometry and various constituent
properties.

These concepts have been extended to describe matrix cracking in fiber
reinforced metal matrix composites under cyclic loading conditionsé-8. By analogy with
the monotonic loading problem, the driving force for crack extension is taken to be the

crack tip stress intensity factor amplitude, AKy:

AK; = AK; + AKp (N
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where AK; is the component due to the applied stress amplitude, AG,, and AKp is the
component due to the bridging tractions, AGp, exerted by intact fibers in the crack wake.

For an infinite center-cracked tensile panel, these components are given by12

AK, = Aoz Vna 2)

and

_ a ra  Aoy(x)
sy =2 {2 [2 2 o

(3)

where 2a, is the initial notch length, 2a is the current crack length and x is the distance

from the crack center.
To evaluate the distribution of bridging tractions, AGy, (x), it is first necessary to
specify the contributions to the change in crack opening displacement Au due to the

applied stress Au, and that due to the bridging fibers Aup!2:

4
Aua--EAo'al a® - x @)

and

-4 ra

where Eis an effective composite modulus (taking account of material orthotropy) and

the Green's function H is12
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w/az -x% + \/az —t?

o e .

H(t,x,a) = ;lr- log

The sum of these components,
Au = Au, + Ay )

is required to be consistent with the cyclic traction law (taking into account reverse slip

during unloading)é:

Au=—;-7\.A0‘l2, (8)

Here A is a material parameter defined by’

_ D(1-f)°E%,
4E% E; £ ©)

where D is the fiber diameter, f is the fiber volume fractions, Em and Ef are the matrix
and fiber Young's moduli and E is the longitudinal composite modulus

(= f Ef + (1-D Em). Coﬁxbining Eqns. 4-8 gives an integral equation of the form

—;-Moﬁ = = Ao, 1/32 —x2 — % f: Acy (H)H(t, x,a) dt (10)

el

" The parameter A differs from that used in Refs. 6 and 9 by a factor of Em(1-)/E. This modification
provides consistency between the steady-state stress intensity factor and the value obtained from
energy-based approaches [10}. A more detailed discussion of the origin of such effects can be found in

[13)
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This equation is solved numerically for AGy, using an iterative scheme, and the result
combined with Egns. 1-3 to evaluate AK.

The effects of finite specimen width, 2w, have also been studied through
calculations based on finite element methods?. For specimens with a normalized notch
size ap/w = 0.2 (a value comparable to those used in the present experiments) and crack
lengths in the range a/w < 0.5, the effects of finite width on the crack tip stress intensity

amplitude can be approximated by the relation

AKt (a/w, AC) = Y (a/w) AK¢(a/e, AC) (11)

where AK; (a/w, AG) and AK; (a/«, AO) represent values for the finite and infinite

specimens, respectively, and

Y (a/w) = 1/sec1ra/2w (12)

(the usual finite width correction used in calculating the applied stress intensity12). The
error introduced by this approximation is less than ~3%. As seen later, this range of
crack lengths is consistent with the majority of values measured experimentally, making

the approximate width correction (Eqns. 11 and 12) suitable for subsequent calculations.

2.2  Fatigue Crack Growth

By analogy to monolithic materials, it is expected that the rate of fatigue crack

growth in composites can be described in terms of AK; through an empirical relation of

the form

da/dN = B (AKp" (13)
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where N is the number of loading cycles. The parameters  and n represent the
behavior of a matrix crack propagating through an array of elastic fibers and are thus
properties of the composite. However, in view of the lack of understanding of the effects
of the fibers on the processes occurring at the crack tip, it seems adequate to select
values of B and n that are representative of the monolithic matrix alloy. With this

approach, the effects of the fibers at the crack tip are neglected.

2.3 Fiber Failure

Once the fibers begin to fail, their contribution to crack tip shielding is reduced
substantially. To incorporate such effects in the model, a deterministic criterion for fiber
failure has been used?. The calculations are conducted by continuously adjusting the
unbridged portion of the crack to maintain a stress at the tip of the unbridged segment
equal to the fiber strength. Through this approach, the entire cracking history (a vs N)
can be simulated.

The results of these calculations can also be used to develop a criterion for a
"threshold" stress amplitude, AG,, below which fiber failure does not occur for any
crack length. Within such a regime, the crack growth rate approaches a steady-state
value, with all fibers in the crack wake remaining intact. The variation in the

"threshold” stress amplitude with fiber strength is plotted in Fig. 1. The maximum

value of AGy, occurs when there is no notch, i.e. a5 = 0, whereupon

AG/fS(1~-R) = 1 (14)
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where R is the ratio of the minimum to maximum applied stress. Increasing either the
notch length or interface sliding stress (or, equivalently, decreasing the fiber strength or

fiber diameter) has the effect of decreasing the quantity AGw /(1 - R) £S.

3. EXPERIMENTAL METHODS
31 Material

The material used in this study was a metastable P-titanium alloy
(Ti-15V-3Cr-3Al-35n) reinforced with continuous, aligned SCS-6 (SiC) fibers. The fibers
are 140 um in diameter and are coated with a 3 pm graded C/Si layer. The purpose of
the coating is to inhibit fiber/matrix interaction during consolidation. The composite
was fabricated through a foil-fiber-foil technique, wherein Ti-alloy foils and fiber mats
are alternately stacked and subsequently vacuum hot-pressed. During consolidation, a
brittle reaction product consisting primarily of TiC forms at the interface between the Ti
matrix and the C-rich fiber coating!4. Prior studies have shown this system to exhibit
the requisite properties for interface debonding and sliding to occur during matrix

cracking21516, A transverse cross section of the composite is shown in Fig. 2.

3.2  Fatigue testing

Fatigue tests were conducted in the 0° orientation using center-notched tensile
specimens. To minimize machining damage, the notches were formed using electrical
discharge machining. The normalized notch lengths were in the range
0.23 £ ap/w < 0.35. One face of each specimen was subsequently diamond polished
to a 1 um finish. Tests were conducted on a servohydraulic mechanical test system at
fixed stress amplitude, AG. In all cases the stress ratio, R, was maintained at 0.1. Crack

extension was monitored using two techniques: indirect potential drop (with thin foil
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crack gauges mounted at the notch tips), and with a traveling stereo-microscope. The
loading parameters and specimen geometry were selected to elucidate the effects of
stress amplitude, ACja, and notch size, 2a,. The transverse fatigue behavior was
measured using compact tension specimens, in accordance with the ASTM standards!?.

The extent of fiber failure during fatigue cracking was monitored using an
acoustic emission (AE) system. The system consists of a 175 kHz resonant piezoelectric
transducer, a variable gain amplifier, and a detector. The detector incorporates a
variable threshold voltage with two counting techniques. Ringdown counting records
each positive slope threshold crossing of a decaying acoustic signal, whereas event
counting records the first crossing and ignores subsequent crossings within a fixed reset
period (1 ms). The latter technique (employed in the present study) has the potential to
resolve individual fiber fractures provided that three conditions are satisfied: a) the
acoustic signal decays below the threshold within the reset period, b) multiple fiber
failures do no occur within the reset period, and c) the system settings can be adjusted
to prevent signals from alternate acoustic sources from crossing the threshold. To
determine the system settings appropriate to the Ti/SiC composite, a series of
preliminary tensile tests were conducted on monofilament composite specimens. The
specimens were prepared by extracting individual SiC fibers from the composite and
bonding the fibers onto aluminum strips using an epoxy adhesive. Tensile tests were
conducted with the transducer attached to the aluminum strip, and the number of
acoustic events associated with fiber failure recorded. The system settings were
systematically varied until individual fiber failures were consistently counted as single
acoustic events. These settings were subsequently used during fatigue testing of the
composite. Furthermore, the accuracy of the acoustic emission measurements was

evaluated by examining the tested specimens following matrix dissolution, as described

below.
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3.3  Observations

Direct observations of fiber bridging and fiber fracture were also made. For this
purpose, tested specimens were sectioned along a plane ~ 3mm above the matrix crack
plane, and the matrix subsequently dissolved down to a depth of ~ émm. During
matrix dissolution, the fractured fibers were removed, whereas the intact fibers
continued to span the entire length of the specimen. A comparison of the spatial
distribution of fractured fibers with the matrix crack prior to dissolution provided a
direct measure of the length over which intact fibers had bridged the matrix crack. The

fatigue fracture surfaces were also examined in a scanning electron microscopy (SEM).

4. LONGITUDINAL PROPERTIES

4.1 Measurements and Observations

Figures 3(a) - (c) show representative trends in the crack growth behavior,
plotted as crack extension, Aa, vs. number of loading cycles, N, for tests conducted at
various stress amplitudes. Here, the specimens had an initial notch size, 2a, = 3 mm.
The results are re-plotted as crack growth rate, da/dN, vs. applied stress intensity
range, AK,, in Fig. 3(d). Similarly, Figs. 4(a) - (d) show trends with notch length at a
fixed stress amplitude, AG, = 400 MPa.

In all cases, the crack growth rates initially decreased with increasing crack
length, despite the corresponding increase in AK;. This behavior is a manifestation of
crack tip shielding by intz<t fibers in the crack wake. The presence of such fibers was
confirmed through comparisons between the matrix cracks following fatigue testing
and the distribution of underlying fibers following matrix dissolution: an example is
shown in Fig. 5. For tests conducted at low stress amplitudes or with small notches, the

deceleration in crack growth continued throughout the duration of the tests (Figs. 3(a),
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(b) and 4(a), (b)). In contrast, tests conducted at high stress amplitudes or large notches
exhibited a transition in which the growth rate accelerated rapidly with crack extension
(Figs. 3(c) and 4(c)). The transition was correlated with the onset of fiber failure. The
distribution of broken fibers following fatigue testing for one such test is shown in
Fig. 6. (These observations correspond to the data in Fig. 3(c)). In this case, the zone of
intact fibers at the end of the test was only ~ 300 um (or ~ 2 fiber spacings).

The evolution of fiber failure during fatigue cracking was alsc confirmed by the
acoustic emission measurements. For tests conducted at low stress amplitudes or with
short notches, the twotal number of acoustic events was typically £10. These
measurements correspond to the failure of fibers that were partially cut during
machining of the notch, an example of which is seen in Fig. 5. In contrast, tests
conducte X at high stress amplitudes or with long notches exhibited extensive acoustic
activity, in accord with observations of fiber failure. Figure 7 shows one example of the
evolution of the number, ny, of failed fibers with crack extension, corresponding to the
test results presented in Fig. 4(c). The parameters in this figure have been normalized
such that a line of slope unity represents failure of all the fibers in the crack wake; the
region above the line ~orresponds to the incidence of fiber failure ahead of the crack tip.
In this case, fiber failure began at a relatively small amount of crack extension
(Aa/D = 2-3). Further crack growth was accompanied by increasing fiber failure and
a concomitant increase in crack growth rate. The acoustic emission measurements also
indicate that, beyond Aa/ D = 12, fiber failure occurs ahead of the crack tip. This point
corresponds closely to the onset of rapid crack acceleration (at N = 8,000), seen in
Fig. 4(c). SEM examination of the specimen following matrix dissolution (Fig. 8)
confirmed the number of failed fibers measured through acoustic emission (within
~ 10%).

SEM examinations of the fracture surfaces revealed two notable features. Firstly,

the amount of fiber ; ullout on the fatigue fracture surface was small; typically < 2D
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(Fig. 9). This observation indicates that the fiber strength distribution is narrow, in
accord with the reported values of Weibull modulus for the SCS-6 fibers (~ 10).
Secondly, the fiber coatings exhibited extensive fragmentation following fatigue
(Fig. 10(a)). in contrast, the coatings on the fibers in the fast fracture region were left
intact (Fig. 10(b)). Evidently, the cyclic sliding leads to a degradation in the fiber

coating.

4.2 Comparison Between Experiment and Theory

The measured crack growth curves have been compared with model
predictions?, taking into account the effect of bridging fibers on AK;. The parameters 3
and n in Eqn. 13 were taken to be those for the matrix alloy5 and are given in Table 1.
The various elastic modulil4 are also given i~ Table 1. The material parameter that is
subject to the most uncertainty is the interface sliding stress, T. Consequently, the
approach adopted here was to compare the experimental data with model predictions
for a range of values of T and then assess whether consistency is achieved over the entire
range of measurements. The model predictions also accounted for fiber failure,
assuming a deterministic fiber strength, S. In this regime, the calculations were based
on a fixed value of T (chosen to be consistent with the data in the regime prior to fiber
failure) and comparisons made for a range of values of 5. The inferred value of S was
then compared with values reported elsewhere.

Figures 3 and 4 show the comparisons between experiment and theory. In the
regime prior to fiber failure, all the experimental data are consistent with the model for
7 in the range of 15 to 35 MPa.

The values of T inferred from the fatigue tests have been compared with those
measured on both pristine and "fatigued” fibers using single fiber pushout tests18

(Fig. 11). Specimens with "fatigued" fibers were prepared by cutting composite sections
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~ 600 pm thick, adjacent to a matrix fatigue crack. The sections were then ground and
polished to a final section thickness of ~ 400 um. The pristine specimens were prepared
in a similar fashion, using undeformed material. The pushout tests show that the
sliding resistance of the pristine fibers is initially ~ 90 MPa, but decreases as the fiber
slides out of the composite. This trend has previously been rationalized in terms of the
wear of asperities on the fiber coating during sliding19. In contrast, the sliding stress for
the fatigued fiber is initially only ~ 20 MPa, but subsequently increases with pushout
distance. This behavior is consistent with the extensive fragmentation of the fiber
coating following fatigue (Fig. 10). Comparisons of the data with the range of values of
T inferred from the fatigue crack growth experiments shows broad agreement,
providing additional confidence in the utility of the micromechanical model. However,
it must be emphasized that the fiber coatings degrade during cydlic sliding, leading to
changes in the interface sliding stress. Such effects have yet to be incorporated in the
model.

The model predictions in the regime following fiber failure are consistent with a
fiber strength of ~4 GPa (Figs.3(c) and 4(c)): a value comparable to previous
measurements of the strength of pristine SCS-6 fibers2(”.

The present observations have also been used to assess the predictions of the
"threshold” stress amplitude, described in Section 2.3. A comparison of the
measurements and predictions is shown in Fig. 12. Here, the experimental data have
been plotted for an average value of sliding stress, T = 25 MPa, with the error bars
corresponding to the uncertainty in T (15-35 MPa). Despite the rather broad

uncertainty, the observations appear to be consistent with the predictions. Specifically,

" It is recognized that a deterministic fiber failure criterion is not, strictly speaking, applicable to ceramic
fibers. However, in the present case, the range of fiber strength is narrow and thus the criterion appears
to be adequate.
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both the experiments and the theory indicate that a transition to the regime of fiber

failure can be brought upon by increasing either AG, or a,.

5. TRANSVERSE PROPERTIES

5.1 Measurements and Observations

In contrast to the longitudinal behavior, fatigue crack growth in the transverse
orientation was not accompanied by crack bridging. Indeed, the fatigue resistance of
the composite in this orientation was inferior to that of the matrix alloy. The trends in
the crack growth rate with the applied stress intensity amplitude are shown in Fig. 13.
The behavior of the composite closely parallels that of the matrix alloy, though the
growth rates are somewhat higher in the composite. SEM examinations of the fatigue
fracture surface indicate that the cracks propagate along the matrix ligaments between
fibers, with no evidence of fiber bridging or fiber fracture in the crack wake (Fig. 14).
These observations are consistent with the static tensile properties of the composite,

wherein the transverse strength is lower than that of the matrix14.

52  Comparison Between Experiment and Theory

An upper bound estimate of the transverse crack growth rate in the composites
can be obtained by neglecting the fatigue resistance of the fiber/matrix interface. The
driving force for crack extension in the composite is thus obtained through a net section

correction of the form

AK: = AK /Am (16)

where An is the area fraction of matrix on the fracture surface. Measurements made on

the fracture surface give‘Am = 0.38. This value compares favorably with one
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calculated, assuming that the fibers are arranged in a square array and that the fatigue

crack propagates along the narrowest matrix ligament between fibers, giving
Am =1- @n/H1/2 = 033. 17)

The model predictions based on this adjustment are shown by the dashed lines on
Fig. 13. Evidently, the predictions lie above the measured data. This result suggests
that either the fiber/matrix interface provides some fatigue resistance, or a closure effect
arises from the presence of the debonded fibers in the crack wake. The latter effect is

consistent with the thermal expansion mismatch in this composite system.

6. CONCLUDING REMARKS

The fatigue crack growth characteristics of a unidirectional, fiber reinforced metal
matrix composite have been measured and the results compared with model
predictions. The results indicate that the properties of the fiber/matrix interface play a
central role. In the longitudinal orientation, matrix cracking initially proceeds with
minimal fiber failure: the weak fiber/matrix interface allows debonding and sliding to
occur, leaving the fibers intact in the crack wake. The bridging fibers provide
substantial crack tip shielding during crack growth, as evidenced by the reductions in
crack growth rate with increased crack extension. The measurements have been found
to be consistent with the predictions of a micromechanical model in which the fibers are
assurned to be frictionally coupled to the matrix, with a constant interface sliding stress.
The values of the sliding stress inferred from such comparisons are in broad agreement
with values measured from single fiber pushout tests on fatigued specimens. These

values, however, are substantially lower than those measured on pristine fibers,
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suggesting that the fiber coatings degrade during cyclic sliding. The role of such
degradation on the cydlic traction law will be addressed elsewhere2!. In some instances,
the fibers in the crack wake fail, leading to a loss in crack tip shielding and an
acceleration in crack growth. The behavior in this regime is also consistent with the
model predictions, using a deterministic value for fiber strength. In the transverse
orientation, the weak fiber/matrix interface results in a degradation in the fatigue
resistance of the composite relative to that of the matrix alloy alone.

An important conclusion derived from both the experimental measurements and
the model predictions pertains to the use of the applied AK as a loading parameter in
describing fatigue crack growth in this class of composite. It is apparent that the
bridging effects in the longitudinal orientation are so pronounced that AK; does not
generally provide even a rough estimate of the crack tip stress field. Consequently, no
unique relationship exists b=tween da/dN and AKj, except in the extreme cases where
the crack extension into the composite is small, i.e. less than one fiber spacing, or when
all the fibers in the crack wake have failed. Similar conclusions have been reached
regarding the use of the applied stress intensity factor in characterizing matrix cracking

in brittle matrix composites.
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FIGURES

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig 5

Fig. 6

Fig. 7

Fig. 8

A diagram showing the influence of notch length, 2a,, and material
parameters (T, D, f, S) on the applied stress AG/(1-R) at which fiber failure is
predicted to occur during fatigue cracking (adapted from Refs. 7 and 22).

At transverse section through the composite.

The influence of stress amplitude on crack growth in the longitudinal
orientation, for a notch length 2a, = 3 mm: (a) AG = 300 MPa, (b) 370 MPa,
(c) 436 MPa. The solid lines are model predictions, assuming no fiber failure
in the crack wake. The additional lines in (c) show the model predictions
incorporating fiber failure, using a sliding stress, T = 35 MPa, and 3 values of
fiber strength. (d) The data of (a)-(c) replotted in the conventional format.

The influence of notch length on crack growth in the longitudinal
orientation, for a stress amplitude AG, =400 MPa (R = 0.1): (a) 2ap = 3 mm,
(b) 6 mm, (c) 9 mm. The solid lines are model predictions assuming no fiber
failure. The additional lines in (c) show model predictions incorporating
fiber failure, using a sliding stress T = 25 MPa, and 3 values of fiber strength.
(d) The data in (a)-(c) replotted in the conventional format.

Comparison between (a) a matrix fatigue crack, as seen on the external
surface, and (b) the underlying fibers following matrix dissolution. The
micrograph are at the same magnification and represent the identical region
of the specimen. The fatigue test was conducted at AG, = 300 MPa, R =0.1,
and 2a5 =3 mm.

A comparison similar to that shown in Fig. 6, for a specimen tested at
AGC, =436 MPa, R = 0.1 and 2a, = 3 mm. Note the extent of fiber failure in

the crack wake.

Evolution of fiber failure with crack extension (t is the thickness of the
composite panel).

Comparison of matrix crack and underlying fibers for test conducted at
AG, =400 MPa, R =0.1 and 2a, = 9 mm. Note the absence of intact fibers in

the crack wake and the extent of fiber failure ahead of the crack tip.

7E:MS19{December 21, 1992)10:10 AM/me!

20




Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

SEM view of fatigue fracture surface, showing the extent of fiber pullout.

SEM observations of failed fibers in (a) the fatigue region, and (b) the fast
fracture region. Note the damage on the fiber coating in (a).

Results of single fiber push out tests on pristine and fatigued fibers. Also
shown is the range of T inferred from the fatigue crack growth experiments.

A diagram showing the conditions under which fiber failure was observed
during fatigue cracking. The line shows model prediction, based on the
results of Fig. 3. (The parameter § is defined on Fig. 1).

Comparison of crack growth rates in composite in transverse orientation
with that of the monolithic matrix alloy. The broken lines represent model
predictions for the composite, based on a net section correction (Egn. 16,
Am = 0.38).

Fatigue fracture surface of the composite in the transverse orientation.
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TABLE1  Mechanical Properties of Fiber, Matrix, and Composite

Matrix Modulus Em = 115GPa[14)

Fiber Modulus Ef = 360 GPa [14]
Longitudinal Composite Modulus E = 200 GPa [14]
Effective Composite Modulus E = 193GPa"
Coefficient in Paris Law B = 5.5x 104 (m1-n/2) [5)
Exponent in Paris Law n = 2.8(5]

*Calculated in Reference [7).
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ABSTRACT

Fatigue crack growth in fiber-reinforced metal-matrix composites is modeled
based on a crack tip shielding analysis. The fiber/matrix interface is assumed to be
weak, allowing interfacial debonding and sliding to occur readily during matrix
cracking. The presence of intact fibers in the wake of the matrix crack shields the crack
tip from the applied stresses and reduces the stress intensity factors and the matrix
crack growth rate. Two regimes of fatigue cracking have been simulated. The first is
the case where the applied load is low, so that all the fibers between the original notch
tip and the current crack tip remain intact. The crack growth rate decreases markedly
with crack extension, and approaches a "steady-state”. The second regime occurs if the
fibers fail when the stress on them reaches a unique fiber strength. The fiber breakage
reduces the shielding contribution, resulting in a significant acceleration in the crack
growth rate. It is suggested that a criterion based on the onset of fiber failure may be
used for a conservative lifetime prediction. The results of the calculations have been
summarized in calibrated functions which represent the crack tip stress intensity factor

and the applied load for fiber failure.
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NOMENCLATURE

a matrix crack half length

ap initial notch half length

D fiber diameter

E Young's modulus of composites: f Ef + (1-f)Em

E effective composite Young's modulus considering material orthotropy
E¢ Young's modulus of fiber

Em Young's modulus of matrix

f volume fraction of fibers

F(a/w) shape function for stress intensity factor: \sec (ra/2w)

¢ unbridged segment half length

n Paris law exponent

N number of load cycles

S fiber strength

\4 finite panel width

o non-dimensional bridge length: (a-£)/a

B Paris law coefficient

o total crack opening displacement

OF crack opening displacement induced by bridging fibers

oA crack opening displacement caused by applied stress

Ax ratio of AKgp to AK,

AKa range in applied mode I stress intensity factor

AKgp  range in mode I crack tip stress intensity factor

Ad change in crack opening

AY non-dimensional measure of the stress amplitude/crack length: 2AEAG/a
AT, non-dimensional measure of the stress amplitude/notch length: 2AEAG/ a,
Ac cyclic applied stress amplitude
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Aos cyclic bridging stress amplitude

A bridging law coefficient: D(1-f)(Em)?/4f2 Ef E21

A% Poisson’s ratio

o} applied stress

Omax maximum applied stress

Cs bridging stress due to fibers

p> non-dimensional measure of the maximum applied stress: 4AEAGmax/ £

interface sliding stress

n non-dimensional measure of fiber strength: 4AE f S/¢
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INTRODUCTION

Fatigue crack growth in metal matrix composites reinforced with brittle fibers
has been studied extensively (Naik and Johnson, 1991; Kantzos, Telesman and Ghosn,
1989: Sensmeier and Wright, 1990; McMeeking and Evans, 1990; Walls, Bao and Zok,
1991, 1993). Experimental results (Sensmeier and Wright, 1990; Walls, Bao and Zok,
1991, 1993) indicate the following fatigue cracking behavior. Under tensile cyclic
loading of the composite in the fiber directicn, the matrix undergoes mode I fatigue
cracking normal to the fibers, while the fibers in the crack wake remain intact due to the
frictional sliding at the fiber/matrix interface. These fibers bridge the crack and shield
the crack tip from the applied stress. Consequently, a transient occurs in which the
crack growth rate da/dN diminishes upon crack extension, and a steady-state regime
follows in which da/dN is small. When the applied stress level is high, the stress in the
fiber at the original notch tip may reach the fiber strength and then the fibers begin to
fail. The crack growth thereafter accelerates again, leading to the final rupture. These
features of fatigue cracking in fiber reinforced metal-matrix composites are shown in
Fig. 1 in which a typical fatigue crack growth curve of a Ti matrix composite with SiC
fibers is replotted from the work of Walls, Bao and Zok (1991). The composite tested
contains 35% of unidirectional fibers, with fiber diameter D = 140um (Jansson, Deve and
Evans, 1990).

In this paper, the micromechanical model of McMeeking and Evans (1990) is
extended to predict the above fatigue crack growth behavior. The materials of
particular interest for this model include Ti/SiC composites that have "weak" interfaces.
Attention here is focused on mode I cracking that initiates from a sharp notch. Matrix
fatigue cracking in metal matrix composites in the absence of a notch has been modeled
recently by McMeeking and Evans (1990). The analysis of fiber stresses, interface
sliding and crack bridging in their model is analogous to that conducted earlier for

fiber-reinforced ceramics subject to monotonic tensile loading (Marshall, Cox and
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Evans, 1985; Marshall and Cox, 1987; McCartney, 1987). Following the analysis of
Marshall and Oliver (1987) and Cox (1990), McMeeking and Evans (1990) considered the
effect of reversal of the fiber interface sliding direction during cyclic loading. They
found that the results for bridging during monotonic loading can be scaled simply to
represent the effect of bridging during fatigue loading. The model is further developed
here to include the effects of an initial sharp notch which is unbridged by fibers at the
outset. This analysis permits the inclusion of the effect of breaking fibers which can
increase the size of the unbridged segment. The influence of finite specimen width and,
of greater importance, the role of fiber failure in fatigue cracking behavior is accounted
for too. Fatigue crack growth curves, both with and without fiber fracture, are
predicted for given values of the relevant parameters.

Calibrated functions have been devised to represent the results. One set of
functions provides values for the crack tip stress intensity factor amplitude as a function
of material parameters, the applied load, the matrix crack length and the size of the
unbridged segment of the crack. Another set of functions gives the applied lcad
sufficient to fail a fiber in terms of the fiber strength, material parameters, the matrix
crack length and the extent of the unbridged segment.

The results in this paper are based on individual models (for bridging fibers, for
their effect on crack tip stress intensities, for the incidence of fiber failure, for cydlic
loading of bridging fibers and for matrix fatigue) which, in one way or another, have
been developed and used previously. In addition, the basic method of analysis
employed to solve integral equations in this paper has been used widely. However, the
previous applications mostly have concerned monotonic loading of brittle matrix
composites and only the work of McMeeking and Evans (1990}, Cox and Marshall
(1991) and Cox and Lo (1992a, 1992b) addressed the question of cyclic loading.
Furthermore, the earlier modelling of fatigue in fiber-reinforced metals has not fully

explored the phenomena when there are notches and failing fibers. In this paper, all of
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the individual model elements are brought together in a treatment of matrix fatigue
crack growth in conjunction with notches and fiber failure. The models have been
shown to agree well with the available data for matrix fatigue growth with and without
fiber failure (Walls et al., 1993). Therefore, the comprehensive model in this paper is
suitable for studying in some detail the phenomena associated with this important
damage mechanism in fiber-reinforced metals to augment the insights available from
experimental data. Such features that can be studied are: the deceleration of the crack
growth rate as the matrix crack grows; the relative influence of notches; the interplay
play between applied load amplitude and the matrix crack length in controlling the
crack growth rate; and the relatively sudden and dramatic transition from survival of
fibers to failure of fibers leading to rapid crack growth as the load is increased or a
critical matrix crack length is reached and exceeded. It is true that these features can be
deduced directly or indirectly from results available in several different papers in the
literature. However, we believe that it is important to bring the results and phenomena
together and present them in a focused manner for the matrix fatigue crack growth
problem.

vhe model presented in this paper is based on certain assumptions. Important
ones are: the interface shear strength 7 is uniform and does not degrade during fiber
load cycling; the strength of the fibers is deterministic and not statistical; the matrix
fatigue crack growth obeys the Paris law for fatigue crack growth in the monolithic
matrix; the entire component or specimen, except for the fiber bridging, can be analyzed
elastically which implies that crack tip plastic zones are small. Some assumptions are
known to be inexact. For example, measurements have shown that the interface shear
strength T for a fatigued specimen with a matrix crack is lower than that for a pristine
material (Warren, Mackin and Evans, 1991). This is krown to influence the crack tip
opening shape since the fiber constraint near the matrix crack tip on freshly exposed

surfaces is relatively stronger than the fiber constraint far from the matrix crack tip on
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old and therefore fatigued surfaces (Kantzos et al., 1989). In some cases this influences
the fatigue crack growth rate. However, there has been significant success when the
model with the fixed value for T is compared with the data for matrix fatigue crack
growth. There are some discrepancies in the transient behavior which can be attributed
to the degradation of T. However, even those discrepancies can be rationalized in terms
of interpolation among models with a fixed T (Walls et al., 1993).

The value of the interface shear strength T which is used to compare the models
to the experiments is usually chosen empirically to obtain one match to the steady state
crack growth rate usually observed after some crack growth in large specimens with
short cracks under modest load amplitudes. Furthermore, the fiber «+ >ngth S is usually
chosen empirically so that onset of fiber failure in the model agrees in one case with the
initiation of fiber failure in an experiment. There is therefore an element of fitting in the
model presented in this paper. However, it should be emphasized that with this
minimal degree of fitting, the model is capable of capturing the rich interplay among
phenomena as controlled by load amplitude, peak load level, matrix crack length and
initial notch length. Furthermore, the pragmatic approach to choosing values for T and
S is made necessary by the fact that in situ properties are needed. In contrast to other
empirical material constants such as fiber and matrix elastic moduli which are relatively
unchanged in situ, it is well known that the interface shear strength T and fiber strength
S are sensitive to processing, treatment, handling and to fatigue cycling itself (Walls et
al., 1993).

CRACK-TIP SHIELDING ANALYSIS
Consider the crack configuration depicted in Fig. 2. The center section of length £
is unbridged. The unbridged center section can represent the original notch of length

2ap or a current unbridged segment after fiber failure. The bridged sections represent
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the growing, mode I, plane strain matrix fatigue crack in the infinite body. With the
possibility that fibers can break, the bridge segment can become unbridged. The current
unbridged segment will then have a length 2¢ > 2a,. Both the fibers and the matrix are
assumed to be linear elastic, with Young's modulus Ef and Em, respectively. Plasticity of
the matrix is neglected in this study. The continuous reinforcing fibers are aligned
normal to the plane of the matrix crack. The fracture energy of the fiber/matrix
interface is assumed to be small, such that debonding and sliding occur readily during
matrix cracking. The sliding behavior of the interface is characterized by a constant
frictional shear stress T, such that the bridging stress Os is related to the crack opening
displacement O during monotonic opening by (Aveston, Cooper and Kelly, 1971;

McCartney, 1987; Hutchinson and Jensen, 1990)

8 = Aol 1)

where A is a material parameter given by

A=D(-fRES/4E2ER1. @)

The bridging stress Gy is the force per unit surface area applied by the fibers to the crack
surface and the opening 8 is the additional displacement of the material on one side of
the crack compared to the other due to the presence of the crack and is measured on a
gauge length larger than the interface slip zones on the fibers at the crack. In eq.(2), D
is the fiber diameter, f the fiber volume fraction and E the composite Young's modulus.
E =fEf + (1-f) Em. Upon cydlic loading, the change in crack opening displacement Ad
after the first peak opening is related to the change in bridging stress AG; in a similar

fashion (McMeeking and Evans, 1990)
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AS = i—;-l (AG)? 3)

where the plus (+) and minus (-) signs correspond to the loading and unloading
portions of the cycle, respectively.

The bridging law and the theory of elasticity and fracture mechanics can be used
to solve the problem depicted in Fig. 2. Pertinent results are the distribution of fiber
stresses within the bridged zone and the crack tip stress intensity factor. Such solutions
have been obtained for both infinite and finite geometries previously by many workers
(Marshall et al., 1985; Marshall and Cox, 1987; McCartney, 1987; Cox, 1990; Cox and Lo,
1992a). A summary of the analytical method is provided in the Appendix. Values for
the bridging stress amplitude have been computed for the applied load range

0 < AX < 20 where the dimensionless parameter AY is such that

AY = 2AEA0/a 4

with E an effective elastic modulus for crack problems which takes the orthotropy of the
material into account (see Appendix). A representative result for the bridging stress 1s
shown in Fig. 3 where it is shown in dimensionless form as a function of position on the
matrix crack. Each curve represents a result for a case with a different unbridged
segment.

Two features in Fig. 3 are noteworthy. The peak stress in the bridging zone
always occurs at the edge of the unbridged segment. This implies that if fiber failure
occurs at a unique deterministic strength, it will always start at the original notch tip. In
addition, when the crack length a becomes very large, for low values of AG almost all
the applied stress is transferred through the intact fibers (i.e., AGs = AG), as indicated by

the £/a = 0 curve. The bridging stress is then rather uniformly distributed except in the
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crack tip region where A0y falls well below AG. At higher values of Ao, the fiber
stresses AG are nonuniform even for long cracks and fall somewhat below AG,

indicating that the shielding effect in that case is less effective.

The stress intensity factor range at the crack tip AKy;p is normalized by the stress
intensity factor range which would occur in the absence of the bridging fibers. For an

infinite body, this would be

AKs = AGTa. )

The resulting ratio is

AKp
AK 4 . (6)

Ak =

Numerical results for A for the problem shown in Fig. 2 are plotted in Fig. 4
against the non-dimensional bridge length (a-£)/afor A =1,2,4, 8,12 and 20. Fora
small bridge, AKtip is almost the same as AK, since the shielding effect is small. The
stress intensity at the crack tip is reduced significantly as the crack length a is increased
beyond the bridged segment to produce a large bridge. These general trends are shown
clearly in Fig. 4.

For the purpose of investigating when a fiber will fail, it is of interest to
determine the largest stress in the fibers in a given state of matrix crack length,
unbridged segment and applied stress. The maximum fiber stress, which always occur
in the fiber adjacent to the unbridged segment, is plotted in Fig. 5a against the
normalized bridge length (a-£)/a. These calculations were carried out with the bridging
law in eq. (1) and represent the stress in the fiber at maximum applied load. Results are

presented in Fig. 5a for several values of the maximum applied load Omax. The points
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in Fig. 5a were obtained by numerical calculation. The full lines were obtained by
fitting functions to the numerical results which will be discussed below. The results in
Fig. 5a can be replotted to give the length (a-f) of the bridge which will have a
maximum fiber stress exactly equal to S as a function of the maximum applied stress
Omax- This is shown in Fig. 5b. Since the unbridged segment £ will grow as fibers fail,
the value of M (defined in (10b) below) will increase when fibers break. However, in the
initial configuration with £ = a,, the curves can be used to predict when the first fiber
will fail. At the beginning of fatigue crack growth, the bridge length a-£ is zero and gets
bigger as fatigue cracking proceeds. Therefore, at a given maximum load, the state of
the specimen starts at the bottom of the diagram and moves upwards at constant £
(defined in (10c) below) since £ is fixed at a,. This will proceed until the curve
representing the fiber strength is reached at which point the first fiber will fail. Thus,
the diagram predicts directly the amount of fatigue crack growth which can occur
before fiber failure will occur. Note that if the fiber strength is high enough or the
maximum applied stress is low enough, fatigue crack growth will proceed without
fibers ever failing.

The numerical results for the maximum fiber stress just discussed can be
augmented with an exact result due to Suo, Ho and Gong (1993) for the situation where
the maximum applied stress is low and the matrix crack is very long compared to the
unbridged segment. In this situation, the unbridged segment will behave like an
isolated crack since the stress transmitted through the bridge almost everywhere will be
equal to the applied stress. Only near the tip of the matrix crack and near the edge of
the unbridged segment will the bridge stress differ from the applied stress. However,
the tip of the matrix crack is too far away from the unbridged segment to have any
influence. Thus, the unbridged segment will behave like a finite crack in a uniform
stress field. Furthermore, the smallness of the applied stress will ensure that the region

of nonuniform bridge stress will be effectively small and the unbridged segment will
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behave as a crack with small scale yielding. Thus, the value of the J-integral (Rice, 1968)
for the tip of the unbridged segment is just that for a finite elastic crack in a uniform

tensile stress. Denoting the value of the J-integral to be ], we thus have

j = cfnaxrc!
E 7)

when the maximum stress is being applied. An elementary result (Rice, 1968) given the

J-integral to be the energy per unit area absorbed by the bridging process and thus

8o 2
J =] 05(5)d5=§x(fs)3 ®

where &, is the crack opening displacement when G5 =fS. Thus, eq. (7) & (8) can be

combined to give

1
2 3
£S = (M)

1 _2

or n = (6m)3 X3 (10a)
P E2 E

where n = D(lzf) EmES (10b)
E?E fZ 1
2 p2 E

and T = D(-f) E"‘Eom‘“. (10¢)

E2E f2¢ 1

As noted above, this result is valid for small X and large a/¢. The latter means that

(a-¢)/a = @ in Fig. 5a is close to unity. The result for X = 0.5 in Fig. 5a agrees closely
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with eq. (10a) but for X = 1 the agreement is merely good. Thus, we conclude that the
asymptotic limit in eq. (10a) can be used when £ < 0.5 and inspection of Fig. 5a

suggests that it will be applicable for £/a < 0.5.

FINITE GEOMETRY

The crack tip shielding analysis performed in the previous section is based on a
model geometry of a center crack in an infinite body. Clearly, fatigue tests on
center-notched tensile specinens are conducted with finite widths. To jusiify the
relevance of the model just developed for finite widths, finite element calculations have
been carried out for such specimens using the ABAQUS code (Hibbitt et al., 1990). The
specimen length 2h is much larger than the specimen width w (h/w =10) and the
non-dimensional original notch size, ap/w is taken to be 0.2 for these calculations, as
shown schematically inset in Fig. 6.

To simulate the intact fibers that bridge the matrix crack, non-linear springs are
used, with a spring law identical to eq. (1). Crack tip stress intensity factors AKyp are

obtained through the J-integral, and normalized by the applied stress intensity, AKa
AKp = AcmaF (a/w) (11a)

where F (a/w) is given in Tada et al., (1985) to be approximately

, na
Fla/w) = sec_ (11b)

Plotted in Fig. 6 as the solid lines are finite element results for the normalized

crack tip stress intensity amplitude AKtip/ AK o against the normalized crack extension
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(a-ag)/a for AZ, =1 and AZ, = 2 where AZ, is the value of AX when a =a,. The
corresponding results for the infinite body (w — o) are shown as the dashed lines.
Inspection of these results indicates that for (a-a,)/a < 0.6, the values of AKyip/ AK 4 for
finite width specimen are essentially the same as those given by the infinite body
solution. Consequently for (a-ap)/a < 0.6, the results in Fig. 4 can be used for the finite
strip as long as AKa is computed according to eq. (11). These findings imply that in
general as long as a/w < 0.5, the results in Fig. 4 can be used to determine the stress
intensity factor in the finite strip.

Following the argument leading to eq. (9), we infer that the maximum stress in

the fiber adjacent to the unbridged segment is such that

1
(s - [31:1:2(1 /w)o2,, ¢ JE'
2)LE (12a)

winy

1
or n = (6m)5 [F(¢/w)Z] (12b)
when Omax is small and the matrix crack is very large compared to the unbridged
segment. This result is valid for any value of £/w as long as the applied stress is
sufficiently low so that small scale "yielding" prevails in the bridge next to the

unbridged segment (Suo et al., 1993).

CALIBRATED FUNCTIONS

It is convenient to approximate the numerical results in Fig. 4 by a set of
functions. These functions can then be used to compute results without recourse to the
numerical methods used to generate the curves in the first place. Calibration functions

of this type were pioneered by Cox and Lo (1992b) including those for finite geometries
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with center notches as in this paper and for edge notches. The functions suggested here
serve the same purpos?2 as those of Cox and Lo (1992b) and are presented as possible

alternatives. We state the following expression for Ak = AKyip/AKA:
A (AT, ©) = exp {-sinct [A (AT) + B(AY) a + C(AY) o2]/al/4)

where o =(a-¥/a (13)

A(AY) = -0.049 + 3.0 / VAT - 0.027 / A
B(AX) = -0.399 + 2.504 / \/Az - 3207 / AX + 0.379 / AX3/2
C(AX) = 0439 — 1.784 / VAT + 1.374 / AT - 0.04 / AX3/2

This approximation is accurate to within a few percent of the numerical results depicted
in Fig. 4 for the range 0.1 <A X <12. Itis similarly close to the function devised by Cox
and Lo (1992b) for the case of the finite crack in tension. In addition, it should be noted
that the expression in eq. (13) is valid for the finite strip with AK given by eq. (11) as
long as a/w < 0.5.

In a similar manner, a function can be fitted to the peak fiber stresses shown in

Fig. 5. This function finds its utility in predictions of fiber failure. The function is

N = o) ep| D
Jo y (Z) (14a)
where o = (a~-£)/a as before,
2 2\3
o(z) = \/z + (6n2?) (14b)
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v(Z) = 131-23% + 02%? (14c)

m(Z) = 14037 - 15327 % + 7.237%°
- 156282 + 0127434 (14d)

and 1 and X are given by (10b) and (10c) respectively. When O = 1, the form given in
eq. (14a) represents the relationship for an infinite body split by a bridged matrix crack
with a center unbridged notch. The form given in eq. (14b) has been deduced from an
expression of Cui and Budiansky (1993) and is asymptotically exact both for small and
large Z. Cui and Budiansky (1993) have shown that this expression compares well with
their numerical results for 2 ranging from 0.4 to extremely large values. The function in
eq. (14a) has been plotted and compared with the numerical results in Fig. 5a. It can be
seen that the agreement is good. No comparison has been made between (14a) and
numerical results for values of 0 not equal to unity for values of X other than those
shown in Fig. 5a. Thus the accuracy of (14a) outside the range shown in Fig. 5a (apart
from @ = 1) is not known.

The form in eq. (14a) is valid for the infinite body only and forms cannot as yet be
given for the finite strip. However, based on the work of Suo et al. (1993), in the case of
the finite strip with the matrix crack extending across the entire width so that a = w, the

form
N2 = T2/(1-£/w)? + [61 F2 (¢/w) Z?)3/3 (15)

can be stated with F(¢/w) given by (11b). The form in eq. (15) is an interpolation
between results for small and large 2 in the manner of Suo et al. (1992) but using the
findings of Cui and Budiansky (1993) to give accuracy for small £/w. For cases where

the matrix extends over only a fraction of the width of the finite strip, it is possible that
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eq. (14a) can be used with ¢ (X) given by the right hand side of eq. (15), (1-at) replaced
by £ (w-a)/a(w-£) but Vo retained as it is. The resulting behavior takes T from zero in
the absence of bridging to the known estimate for T} when the matrix crack extends over
the entire width of the finite strip. However, no attempt has been made to check

whether this assertion is reasonable.

MATRIX FATIGUE CRACKING
The governing equation for matrix fatigue crack growth in fiber reinforced

composite is assumed to be simply the Paris law (McMeeking and Evans, 1990)
da/dN = B (AKip/Em)® (16)

where 3 and n are material parameters for the matrix material. An underlying
assumption here is that the fatigue crack growth rate in the matrix is governed by the
crack tip stress intensity amplitude, AKyp, in accord with the Paris law for the matrix
alloy alone. Therefore, the intact fibers contribute to the composite fatigue behavior
only through AKtip. In the calculation of AKip, the composite is taken to be
homogeneous and orthotropic, and the crack front is assumed to be straight. In
practice, however, only the matrix is fatigue cracked when fibers remain intact, and the
crack front adopts a rather complex shape. As a consequence, the local stress intensity
factor amplitude will not generally be equal to the calculated AKgp values established
through idealized bridging calculations. One approximate model for the effect is that
the average stress intensity factor amplitude at the matrix crack front is equal to
AKgp/N (1-) E/Em (Budiansky Amazigo and Evans, 1988), accounting for the reduced
area of material being cracked as well as the elastic inhomogeneity. To permit

incorporation of this effect into the model, the modulu- Ep, has been used in eq. (16)

4H:MS28(April 14, 1993)10:02 AM/mef

—‘—




instead of Em. Thus, the Budiansky et al., 1988 model would be accounted for by use of
Em ="V (1-) E/En. However, in this paper, Er, will simply be assumed to be Em and
any effect of this assumption will be compensated for in the empirical choice of a value
for T.

The fatigue crack growth law of eq. (16) was integrated with AKyp evaluated
from the expression in eq. (13) with AKa = AG \ma as for the infinite body. The
calculation was carried out for exponents n =2 and 4 and for 4 values of AY; in each
case where AY, = AX a/a,. Note that AY, remains constant if A0 is held fixed during
fatigue. The results for non-failing fibers are shown in Fig. 7a and 7b. The plots show
that for the load amplitudes assumed, the crack does not have to extend very far
compared to ihe original notch length for the rate of crack extension to diminish
dramatically.

The theoretical predictions of fatigue crack growth in Fig. 7 have two of the
features exhibited in the experimental results, i.e., a transient region in which da/dN
diminishes upon crack growth, and a seemingly steady-state region in which da/dN
remains almost constant. The non-dimensional parameter AY, that governs the
prediction is a combination of the original notch size, material properties and the fixed
applied load amplitudes. Fatigue crack growth curves for situations with a varying
load amplitude AG have not been presented because there are too many possibilities.
However, they can be pieced together in a rather complicated manner from the curves
for constant AL,. The appropriate procedure can be deduced from integration of
eq. (16).

It has been observed experimentally that at high values of applied stress
amplitude AG, the crack growth rate decreases first due to the fiber shielding, reaches a
minimum value and then increases with further crack extension, as exemplified by the
crack growth curve shown in Fig. 1 (Walls et al., 1991, 1993). The acceleration in crack

growth rate has been attributed to the occurrence of fiber failure, as suggested by the
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direct observations of fiber bridging and fiber fracture along the length of the matrix
crack (Walls et al., 1991, 1993).

In practice, there is a statistical characteristic to the fiber failure process.
However, to incorporate the effects of fiber breaking into the fatigue crack growth
model just developed, a deterministic approach is adopted. The fibers are assumed to
have a unique strength S, such that they fail in the plane of the matrix crack when the
stress on them there reaches S. Both the bridging law eq. (3) and the Paris law eq. (16)
remain valid. The frictional pull-out effect of broken fibers on AKqp is neglected since
the deterministic fiber strength implies that fibers break at the matrix crack rather than
inside the material. Once the fibers begin to fail, the unbridged notch length is
continuously adjusted in the calculation to maintain a fiber stress at the unbridged
notch tip equal to the fiber strength. The conditions giving rise to this have been
presented and discussed already in connection with Fig. 5.

Of interest, however, is the relationship between the current unbridged segment
length 2£ and the original notch length 2a, for a given fatigue problem. For simplicity,
attention will be confined to cases where AG is fixed during fatigue. The function in
eq. (14) can be used to predict £ vs. ap during fatiguing for given fiber strength. A
particular result is shown in Fig. 8 for crack growth in an infinite body. The dashed line
on the diagonal specifies £ = a,, and so depicts the relationship prior to first fiber failure.
At the beginning of fatiguing, a = a5 so the top right of Fig. 8 is the starting point for the
process. As the fatigue crack grows at first without fiber failure, the state of the
specimen will move down the dashed line on the diagonal towards the bottom as
indicated by the arrow. The state departs from the dashed line when fibers begin to fail.
The point of departure for several ratios of maximum applied stress to volume fraction
reduced fiber strength are marked on Fig. 8. Thereafter, as the fatigue crack grows, the

state of the specimen follows the relevant full line towards the top left of the diagram as
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indicated by the arrow. Each full line in Fig. 8 represents the relationship for the fixed

ratio of Omax/fS noted at the intersection of that full line with the diagonal dashed line.

If the fibers are weak or the maximum applied stress is high, the fibers break
close to the matrix crack tip (ap/a is close to unity) and the bridging zone is always a
small fraction of the crack length (£/a remains close to unity as the crack grows). This
means that fibers will continuously fail close to the matrix crack tip as the matrix crack
grows. In this case there will not be much shielding and the fatigue crack growth rate
will be similar to what would be expected in an unreinforced matrix. If the fibers are
moderately strong or the maximum applied stress is moderately high, the fibers remain
intact at first and a sizable bridging zone can develop. However when the first fiber
fails, say when ap/a = 0.5, subsequent fiber failure occurs fairly rapidly as the crack
grows. The unbridged crack length increases faster than the matrix crack length. In
that case the value of AKy;p will increase quite rapidly as the matrix crack grows after
the first fiber fails. That means that the matrix crack growth rate will accelerate
significantly after first fiber failure. When the fibers are strong or the maximum applied
stress is modest, first fiber failure is delayed. However, after it occurs, say when
ao/a=0.1, many fibers fail essentially simultaneously and the unbridged length
increases very rapidly. This causes AKyp to jump to a higher value with a
corresponding sudden increase in the crack growth rate. As noted previously, when the
fiber strength is higher than a threshold value, they will never break and the fatigue
crack growth rate will persist at the low level associated with extensively bridged
cracks. The annotation on Fig. 8 makes it clear that the sensitivity to fiber strength is
quite marked, with the different types of behavior outlined in the last few sentences
occurs over a very narrow range of fiber strengths, or equivalently over a very narrow
range of maximum applied stress.

Plotted in Fig. 9 are the fatigue crack growth curves predicted from the Paris law

eq. (18) for infinitely large specimens taking fiber fracture into account. Without fibers
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breaking, the fatigue crack growth curves are the same as those in Fig. 7. In the
presence of fiber fracture three matrix fatigue crack growth curves are presented
corresponding to three different fiber failure strengths. If fibers are relatively weak,
fiber failure occurs early on, and a gradual transition is predicted. For stronger fibers,
however, the transition occurs later but becomes more abrupt as can be seen in Fig. 9.
This sudden increase of crack growth rate is due to the sudden lengthening of the
unbridged zone after first failure of stronger fibers as depicted in Fig. 8. Once the fiber
failure process starts for strong fibers, it tends to continue rapidly until most of the
fibers fail in the bridging zone that has been previously built up. As a consequence the
crack growth rate increases suddenly and is comparable to the fatigue crack growth rate
in the unreinforced matrix. This has been observed in experiments (Walls et al., 1991,

1993).

FIBER FAILURE

The rapid growth of fatigue cracks after fibers have commenced failing, as
depicted in Fig. 9, suggests that an important strategy for design and use of fiber
reinforced metal components will be the avoidance of fiber failure. Once fibers begin to
fail after significant crack growth, they will quickly break along the fatigue crack. In
addition, further crack growth will be accompanied by more fiber failure. As a
consequence, the benefits of fiber reinforcement will be partially lost and if there are
many matrix fatigue cracks, fiber reinforcement may be significantiy impaired.
Therefore, it can be suggested that the end of useful life of the composite material can be
considered to be the onset of fiber failure. It should be noted that fracture of the
composite material after fatigue crack growth will depend on a combination of the
matrix toughness and the fiber strength. This has been studied by Cui and Budiansky

(1993). However for high toughness matrices such as titanium alloys, fracture of the
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composite material after matrix fatigue and fiber failure will depend primarily on
matrix toughness. A very approximate estimate for residual composite strength after
fiber failure is therefore Kic/ \fﬁ where Kjc is the fracture toughness of the matrix
alloy. A more exact assessment of residual strength can be carried out using the more
accurate models of Cui and Budiansky (1993). However, an important point is that fiber
failure is a necessary precursor before the residual strength of the composite material
becomes a relevant consideration. Therefore, the life up to fiber failure is an important
determinant and the time between first fiber failure and composite fracture is likely to
be relatively short.

As noted previously, if the maximum applied stress is low enough, fibers will
never fail during matrix fatigue crack growth. It is useful to investigate the
circumstances which will ensure that fibers will remain intact throughout crack growth.
As implemented by Walls et al. (1993), this can be done by plotting the ratio of the
maximum applied stress to the fiber strength against the intercepts of the curves in
Fig. 5a with O = 1 (where £/a — 0). The result, shown in Fig. 10, is 2 map determining
when fibers will fail and when they do not. The numerical results have been shown for
the infinite body in which case ap/w = 0. Below the line in the diagram, no fiber failure
will occur no matter how much matrix fatigue crack growth occurs. However, if a
component is highly stressed so that it operates above the line in the diagram,
eventually fiber failure will occur during matri+ fatigue crack growth. Walls et al.
(1993) have found this diagram to be effective in distinguishing the incidence of fiber
failure from nonfailure in experiments.

For comparison with the numerical results, a relationship derived from eq. (15)

has been plotted in Fig. 10. This is

2
(1-20/w)ST [ op T _ (1_3_J2 Fz(gg_)_é_ﬁa
O max (1-a,/w)fs| |U w w/m (17)
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where 7 is given by eq. (10b) and F2 (ap/w) = sec (T ao/2w). It can be seen that the
prediction agrees well with the numerical results. Furthermore, the form of eq. (17)
indicates that the map can be generalized to the finite strip without significant
alteration. In view of this, the map in Fig. 10 has been presented in a form allowing for
the notch to width ratio of a finite strip.

The map in Fig. 10 can be adapted to show the extent to which crack growth can
occur in an infinite body prior to fiber failure. If the loading of a very large component
is such that according to Fig. 10 fiber failure will eventually occur, the matrix crack will
reach the length 2ar and then fibers will commence failing. The ratio of this length to
the original notch length is shown in Fig. 11 for various levels of loading and original
notch length taking fiber strength and volume fraction into account. For a given notch
length, the contours in Fig. 11 indicate the permissible maximum stress for a given
extension of the matrix crack. For example, the contour marked af/a, =2 shows the
relationship between maximum applied stress and notch length which will produce
exactly a doubling of the flaw length before fiber failure will begin to occur. Similarly
the contour for af/ap = 20 shows the maximum stress which will exactly cause the
matrix crack to reach 20 times the length of the initial notch before fiber breakage The
line wit]g af/ap = °° is the boundary between fiber nonfailure ard failure from Fig. 10
and for a’ maximum stress lying on or below this contour, the matrix crack can extend to
infinity without fiber failure. The plots in Fig. 7 can be used to predict how many cycles
of constant load amplitude will occur before the matrix crack reaches the extent at
which fiber failure will commence. Thus, for large components, Figs. 7 and 11 can be
combined to provide a basis for life estimation up to fiber failure for values of A%,

ranging from 1 to 8.
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CONCLUDING REMARKS

A model has been presented for matrix fatigue crack growth emanating from a
finite notch. Predictions have been presented for the relationship between the matrix
crack length and the number of load cycles of a given amplitude. In addition, the
matrix crack length when fibers will begin to fail has been identified in terms of fiber
strength, maximum applied stress and initial notch length. These predictions have been
compared to experimental data for fatiguing of titanium/SiC fibrous composites and
the model has been shown to work well (Walls et al., 1993). As mentioned in the
introduction, the comparison between the model and the data has been based on a
number of empirical steps. Over and above the use of empirical values for fiber and
matrix elastic moduli, fiber volume fraction, fiber diameter and monolithic matrix
fatigue crack growth rates, a single value for the interface shear stress 7 is determined to
ensure that the steady state fatigue crack growth rate in one experiment is accurately
predicted. The transient prior to steady state matrix fatigue crack growth is then
predicted accurately without any further empiricism. Furthermore, it is then found that
when no fiber failure occurs, the model with the same value of T can predict the results
of other experiments carried out at different load amplitudes and with different notch
lengths.

Fiber failure is treated in a similar way. A value of fiber strength S is determined
that will cause the model to accurately predict the onset of fiber breakage in one
experiment. Without further empiricism, the model then accurately predicts the rate of
matrix fatigue crack growth after the initiation of fiber breakage in that experiment. In
addition, without alteration to parametric values, the model accurately predicts the
onset of fiber failure when different initial notch lengths and maximum applied stress
magnitudes are used in the experiments. The value of T used in the comparison of the
model with experimental data is consistent with in situ measurements by push out of

fibers (Warren et al., 1991) after fatigue cycling of the specimen. In addition, the fiber
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strength used in the model is in good agreement with the strength of fibers tested after
being removed from the composite by dissolution of the matrix. This strength is less
than that for pristine fibers and the reduced value is thought to be due to processing of

the composite material.
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APPENDIX

GOVERNING EQUATIONS

The equation governing the stress distribution along a bridged matrix crack
subject to a monotonic applied stress Omax and the bridging law eq. (1) is (Marshall and
Cox, 1987)

T2(x)/16 + j:_a . (X) H(t,%)dt = Z+1-%2 (A1)
where
S, = 4AEGs/a (A2)

and Oj is the stress transmitted through the matrix crack by the fibers defined as a
traction on the crack area. Thus Oy is equal to the actual stress in the fibers at the matrix

crack multiplied by the volume fraction of fibers. In addition, A is given by eq. (2),
1-0=2/a (A3)

2¢ is the length of the unbridged segment, 2a is the length of the matrix crack, X = x/a
where x is the distance from the center of the notch,

2 _ 42
HLR) = L logfhoie t VIt

1-x° - v1-t (A4)
S = 4AEGma/a = Zt/a (A5)
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with X given by eq. (10c) and E is an effective elastic modulus taking the material
orthotropy into account.

Consider a plane strain, center crack running in the x-direction in an infinite,
orthotropic body. Results from Sih, Paris and Irwin (1965) for cracks in orthotropic
bodies can be used to provide solutions for the point force on a crack surface and
therefore for fully and partially bridged cracks. This justifies the use of E in (A1). For
example, when the coordinates x and y coincide with the principal axes 1 and 2 of the
orthotropic material, the crack opening displacement A due to the remote applied

tension O is (Bao et al., 1992)

1
s Ta
5y = &[_Ei] 2
E;

E) (A6)
provided that
E1 E; 1
p = - (V2 vy)? =1
Consequently, the effective Young's modulus Eis given by
v ’ ’ ’ 1
E = E2 [E1 /Ez]4 (A8)
where
E]l = Ei/(1-vi3vy)
E; = Ey/(1-vyvy)
Via = (Via+ Vi3 Van)/(1-vy3 v3)
Vo = (Va1+ Vg Va1)/(1-vy V). (A9)
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In the cases where p is close to 1, E can be approximated by

1

=1 1+ .5 ’ ’ ’ 1
£ = ( 2p) B2 [Bi/EaJt (A10)

For more general situations Cui and Budiansky (1993) have provided numerical values
for orthotropy factors A which can be used to determineE. The relationship between E
and A is

1-v? (A11)

in which v is the Poisson's ratio of fiber and matrix which are assumed to be the same.
The orthotropic modulus E can be used to determine the opening of the crack due to the
applied load and for the effect of fibers on the crack opening (Cui and Budiansky, 1993).

For a bridged matrix crack subject to load cycling such that the amplitude of the
applied load is AC the bridging behavior is given by eq. (3) and the governing is
(Marshall and Cox, 1987; McMeeking and Evans, 1990)

2 (= 1 < =2
Ax?(%)/16 + L—a AZ,(t) H(t,%)dt = AZV1-% (A12)
where AZ is given by eq. (4) and

AX; = 2AEAGs/a (A13)
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and AG; is the amplitude of the stress cycle at the matrix crack sucface. Note that as
shown by McMeeking and Evans (1990) Zs and AZ; obey exactly the same equation so
that results for them can be interchanged.

The equations were solved by standard methods discussed by Marshall and Cox
(1987).
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig.7

Fig. 8

Fig. 9

A typical fatigue crack growth curve for a Ti/SiC composite. The length Aa
of the matrix fatigue crack beyond the original notch is plotted against N the
number of load cycles. The actual dimensions of the specimen are shown in
the insert.

Schematic of a center crack in an infinite body under remote tension, with
bridging fibers in the matrix crack wake.

Distributions of the non-dimensional bridging stress for different unbridged
lengths for AX = 1.

Non-dimensional stress intensity ranges versus normalized crack extension
for different applied stress amplitudes.

Plots giving the relationship among the length of the crack, a, the unbridged
segment £, the maximum stress in the fibers S and the maximum applied load
Gmax.

Full lines show the normalized stress intensity ranges versus normalized
crack extension for a finite width specimen computed by finite elements. The
dashed lines show the results for an infinite body computed by solution of the
integral equation.

Predicted fatigue crack growth curves when fibers do not fail. The
normalized crack extension is plotted versus the normalized number of load
cycles. (a) Paris law exponent n = 2; (b) Paris law exponentn = 4.

Fiber breaking rate related to fiber strength, applied load and matrix crack
growth rate; 2£ is the length of the current unbridged segment of the crack,
whereas 2a, is the length of the original unbridged notch.

Predicted fatigue crack growth curves in the presence of fiber failure forn = 2
and different values of AX,,
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Fig. 10  Map for fiber failure and non-failure in a finite strip with a central notch in
which a matrix crack can grow by fatigue.

Fig.11 Relationship between applied stress, fiber strength and notch length for a
specified extension of the matrix crack before fiber failure will occur.
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The Anisotropic Mechanical Properties of a Ti
Matrix Composite Reinforced with SiC Fibers

S. JANSSON. H.E. DEVE, and A.G. EVANS

The anisotropic mechanical properties of a Ti alloy composite reinforced with SiC fibers have
been investigated and rationalized using analytical models. The appropriate material mode! for
this composite involves the following features: an interface that debonds and slides, a flaw
insensitive ductile matrix, and high-strength elastic fibers subject to residual compressive stress
caused by thermal expansion mismatch. This model is broadly consistent with the longitudinal,

transverse, and shear properties of the composite.

I. INTRODUCTION

V ARIOUS Ti matrix composites reinforced with SiC
monofilaments have been subject to assessment.!'-5! The
present study describes measurements and preliminary
analysis conducted on a Ti-15-3 alloy uniaxially rein-
forced with SiC (SCS-6) fibers. The ultimate objective
is to use measurements and analysis to establish the con-
stitutive properties of the composite, consistent with the
deformation and fracture mechanisms operating in the
material.

Previous research on these materials has emphasized
some of the rransverse tensile properties, particularly the
influence of the residual stress and incidence of interface
debonding. The higher thermal expansion coefficient of
the matrix compared to the fiber causes the interface to
be subject to normal compression, of order 300 MPa "
Furthcrmore, the “interface™ between the fiber and the
wnatrix is “weakly” bonded.”* Consequently, it has been
proposed that the composite exhibits elastic properties
characteristic of those for bonded interfaces until the stress
at the interface caused by the applied load exceeds the
residual compression, at about 200 MPa.'>*! Thereupon,
interface debonding occurs and reduces the longitudinal
modulus to about one-third the initial value (Figure 1).
Subsequently, general yielding at the matrix occurs, fol-
lowed by fracture. This sequence of events is broadly
consistent with measurements of the unloading and re-
loading behavior and by observations of interface de-
bonding."*! Notably, subsequent to initial loading above
the debond stress, bilinear reversible unloading/reloading
behavior has been found, provided that the peak stress
was less than about 300 MPa (Figure 1). The “knee”
has been attributed to the stress at which the interface
separates. Furthermore, debonding has been detected,
using a replica technigue, at stresses above ~200 MPa.
Numerical procedures have been used to simulate this
behavior for a Ti-6V-4Al matrix system by assuming that
the interface has a negligible fracture energy (i.e., zero
mode 1 strength) and is subject to a friction coefficient,
# = 0.3.1% The results are broadly consistent with the
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Materials Department, are with the College of Engineering, University
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55144-1000.

Manuscript submitted June 8, 1990.
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experimental measurements, provided that the fibers are
assumed to have anisotropic elastic properties, with a
transverse modulus about 70 pct of the longitudinal
modulus.

In the present study, measurements and observations
are performed to extend previous work and have the ob-
Jective of developing a material model that provides an
overall rationale for the mechanical characteristics of these
composites. For this purpose, tests are performed in both
longitudinal and transverse tension, as well as in shear,
accompanied by various microstructural and damage ob-
servations. In addition, various analytical solutions are
used to rationalize the observations.

II. MATERIAL

The matrix is a metastable 8 titanium alloy: Ti-15V-
3Cr-3A1-3Sn. The SCS-6 fibers consist of a C core and
have a graded C:Si coating. The fiber diameter is typ-
ically 140 um. The materials are made by hot-pressing
alloy foils between fiber tapes. The fiber volume fraction
in this material is f = 0.35. A cross-sectional view re-
veals several features (Figure 2(a)). The fiber lay-up is
randomly distributed. There arc also several reaction
products formed around the fibers (Figure 2(b). Consis-
tent with previous studies,!®-”! there are three noticeable
layers. The two layers adjacent to the fiber are graded
C:Si coatings with detectable amounts of Ti in layer B
(Figure 2(b)). The outer layer is TiC. Also, in this com-
pos’te, a thin TiC layer exists between many of the alloy
shee’s.

1. MECHANICAL MEASUREMENTS
A. Constituent Properties

A thin tensile specimen made of the matrix material
was produced by delaminating a matrix layer along the
TiC film, followed by grinding to produce a flat gage
section, 0.1 X 5 X 30 mm. The longitudinal strain was
measured with a 3.2.-mm strain gage. The stress-strain
curve of the foil (Figure 3) indicates that Young's mod-
ulus E = 115 GPa, the initial yield strength o, =
750 MPa, and the ultimate tensile strength o, , =
950 MPa.

The modulus of the fibers was measured on single fi-
bers extracted from the composite. For this purpose, a
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Stress

Strain

Fig. 1 —A schematic of the transverse tensile characteristics of Ti
matrix composites reinforced with SiC fibers !>

Fig. 2— SEM cross section of the composite revealing (a) the overal)
spatial arrangement of the fibers and (3) the reaction product layer
around the fibers.

cantilever mode was used, wherein a load was imposed
at the end and the deflection measured. The average
Young's modulus of 50 fibers, determined by assuming
¢clastic homogeneity, was E, = 360 GPa. This value is
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Fig. 3 Tensile stress-strain curve for the matrix.

somewhat lower than the cited axial value of 400 to
425 GPa.! The low modulus is attributed to the soft
carbon core and carbon surface layer. For reference pur-
poses, it is noted that the average tensile strength of the
fibers § = 4.3 GPa for a 25-mm gage length and, by
assuming a Weibull distribution, the shape parameter
m = 9! and the scale parameter S, = 4.5 GPa for a
reference length L, = 1 m.

B. Test Specimens for Composites

The specimen used for both longitudinal and trans-
verse tests has a large radius at the transition from the
gripping section to the reduced gage section to minimize
stress concentrations. The gage section is 1-mm wide
and 6.25-mm long. The in-plane strains that develop upon
testing were measured with 3.2-mm strain gages, while
the strain in the thickness direction was obtained using
1.62-mm gages.

In-plane shear propertics were determined with spec-
imens of losipescu typef® (Figure 4). The specimen is a

at2"

R0.030 -

20

- 090
00t

105°
Fig. 4 A schematic of the Iosipescu specimen.
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short beam in antisymmetric loading. with a symmetry
line in the midspan subject to pure shear. However, the
stress is singular if the notch is too sharp and parabolic
if the notch is too blunt. In practice, the notch angle is
selected to be slightly larger than critical (110 deg) in
order to be conservative and to avoid high stress con-
centrations. The shear strain that developed was mea-
sured with two 1.62-mm strain gages mounted on opposite
sides of the specimen in the gage section: one at +45 deg
and one at —45 deg. Properties have been obtained for
two fiber orientations (Figure 7): fibers oriented in the
direction of the notches, with longitudinal loading, and
fibers oriented perpendicular to the notches, with trans-
verse loadin%. All tests were conducted at the strain rate
of ~107% s,

The flexural properties were obtained in three-voint
bending. Two beam lengths have been used. A long beam
{span to thickness: 8.2) provided a measure of the tensile
properties and a short beam (span to thickness: 3.7) was
used to measure the interlaminar shear properties.

C. Composite Properties

The measured moduli and Poisson’s ratios are sum-
marized in Table 1. The longitudinal tensile stress-strain
curve (Figure 5) indicates that the response is linear up
to approximately 850 MPa, at a strain of 0.5 pct, and
the ultimate strength ¢, = 1800 MPa, occwring at a strain
of 1 pct. The transverse tensile stress-strain curve
(Figure 6(a)) indicates a deviation from linearity at
150 MPa at a strain of ~0.15 pct and an ultimate strength
of o,, = 420 MPa at a strain of 1.2 pct. The strain in
the thickness direction ‘Figure 6(b)) exhibits an abrupt
increase at the onset of nonlinearity, indicative of a vol-
ume increase. Subsequently, the slope diminishes and
asymptotically approaches the initial elastic slope.

Measurements of in-plane shear properties (Figure 7)
indicate that the initial elastic response for the two ori-
entations is similar but that the flow strength is notice-
ably different. Such a difference has not been observed
for ductile matrix systems with bonded interfaces.

The flexural experiments performed on long beam re-
sulted in failure from the tensile surface. Based on a lin-
ear elastic formulation, the cormresponding tensile stress
at the ultimate load was 2.5 GPa. The tests on short beams
resulted in nonlinearity occurring by interlaminar shear.
The shear stress at the onset of flow was 260 MPa
(Figure 8).

2000
e = R |
Utimate
Strangth &
[y
1500
I
o
<
«w 100C
v
2
&
500 — Experiment
Computed
AP=0Q
o P =400 MPa
0 j i | I i
02 04 06 a8 10

Longitudinal Strain (%)

Fig. S—The stress-strain curve in longitudinal tension. Also shown
as the triangles and circles are predicted results for two levels of re-
sidual stress as well as the ultimate stength predicted using weakest
link statistics.

D. In Situ Measurements

Transverse tension tests have been conducted in situ
in a scanning electron microscope (SEM). The test spec-
imens used in the in situ tests were similar to those used
in the servohydraulic testing frame but with a gage sec-
tion of S X | X 0.5 mm. The composites were tested
in a SEM tensile stage,* with the fiber axis normal to

*Instruacnted JSM-840 siage, Ernest Fullam Inc., Latham, NY
12110.

the plane of observation (Figure 9). Within the accuracy
of the optical measurements of the matrix-fiber separa-
tion (~0.1 ;m), the experiments confirm that interface
separation commences at a stress of 200 = 10 MPa
(Figure 9). Furthermore, when the peak stress is below
300 MPa, the debond closes upon unloading (Figure 9),
with an unloading curve of the type sketched in Figure 1.
However, upon loading above 300 MPa, debond closure
doces not occur upon unloading (Figure 9), indicative of
plastic deformation in the matrix.

Table . Summary of Elsstic Properties
E t E 2 Gu
(GPa) Vy2 GPa) Vay [ £1] (GPa)
Experiments 196 0.2% 129 0.34 0.20 62.0
Calculations bonded interface 201 0.27 17 0.32 023 64.4
sliding interface (1, = 0) 201 — 127 —_— — 29

Fiber properties: £ = 360 GPa and v = 0.17.
Matrix propertics: £ = 115 GPaand » = 0.33.
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Fig. 6—(a) Stress-strain curve in transverse tension: tiso shown as
the dotted curve is the bilinear elastic behavior predicted with inter-
face debonding (&) The change in strain in the thickness orientation
with the imposed transverse strain showirg the dilatation that occurs
upon debonding.

IV. CHARACTERIZATION

Specimens tested in longitudinal tension exhibit the
fracture characteristics depicted in Figure 10. The two
most notabie features are the extensive fiber/matrix sep-
aration and the fully ductile nature of the matrix fracture.
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Fig. 7— The shear stress-strain curves measured for the two orien-
tations; also shown are the predicted curves for a bonded interface
and a sliding interface with 7, = 0.
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Fig. 8 — The interlaminar shear-stress deflection curve obtained using
a short span three-point flexure specimen.

Shear Stress (MPa)
8

-

It is also noted that the fracture plaoe is irregular, having
height variability up to about 3 fiber diam :ters. and that
extensive delamination occurs along the TiC planes. Close
inspection of the fiber/matrix separations (Figure 10),
coupled with EDAX analysis, indicates two features. The
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Fig. 9—In sim observations conducted in the SEM upon transverse

debonding occurred primarily at the A/B interface
(Figure 2(a)). with the outer carbon layer attached to the
matrix and the inner carbon layer attached to the fibers.
Furthermore. the outer C layer exhibits multiple crack-
ing. The latter phenomenon is typical of brittle debond
layers when attached to the ductile member of a com-
posite system. ¥

The fracture surfaces of specimens tested in transverse
tension are also irregular. Inspection of side surfaces re-
mote from the fracture surface confirms that transverse
debonding propagates predominantly in the inner carbon
coating in mode | debonding and along the A/B inter-
face in mixed mode debonding (Figure 11). Addition-
ally. the reaction product layer exhibits radial cracks
normal to the transverse tension. These cracks induce
shear bands in the matrix, which may contribute to the
failure process (Figure 11(c)). It is also noted that the
area fraction of matrix on the fracwure surface A, = 0.4,

METALLURGICAL TRANSACTIONS A

loading.

indicating that the fracture selects material planes that
contain a higher than average area fraction of fibers.

The specimens tested in shear exhibit matrix features
characteristic of mode 1I ductile fracture (Figure 12). Also.
fibers are exposed by the fracture with fragments of re-
action product layer attached.

V. PRELIMINARY ANALYSIS OF RESULTS
A. The Material Model

A fuli analysis of composite behavior would require
further mechanical measurements and damage observa-
tions as well as selected numerical calculations. Instead,
the intent here 15 to use simpie analytical results in an
atiempt to provide a physical rationale for the observed
composite characteristics and to use this information to

VOLUME 22A. DECEMBER 1991 — 2979




b)

Fig. 10— The fracture surface of a specimen tested in longitudinal
tension: (@) a low magnification view: and (b) a closc-up of a de-
bonded interface indicating the debond at A and the multiple cracked
reaction product B.

design additional experiments as well as to motivate fur-
ther numerical calculations. For this purpose, the elastic
properties, the flow stress, and the ultimate strength are
examined successively using a physically consistent ma-
terial description. The material model that seemingly
provides the best rationale, depicted in Figure 13, is con-
sistent with that suggested by previous studies.!*¥ The
interphase between the fiber and matrix is characterized
by a debond fracture energy I, that depends on the load-
ing phase i (increasing as & increases) and by a sliding
stress 7, along the debonded interface.!" The sliding stress
7,. in turn, depends on the stress normal to the interface,
perhaps in accordance with a Coulomb friction coeffi-
cient, u. When the dominant debond interphase in car-
bon. T',. appears to be small'"® (<1 Jm™?). debonding
occurs readily in all modes of loading and, conse-
quently. the mechanical response of the interface is dom-
inated by sliding.""*'Y Since a carbon layer is retained
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Fig. 11— SEM view of the side surface of a specimen tested to fail-
ure in transverse teasion: (d) overview; (b) 2 high resolution view of
the debnrded interface: and (c) = high resolution view of crucks in
the reaction product layer and of shear bands induced in the matnx.
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Fig. 12— A matrix region of a fracture surface of a specimen tested
in shear.

Made 1
Debonding: Siding

Longitudinat

Fig. 13— The material modei used to rationalize the mechanical be-
havior of the composite: (a) mode 1i debonding and sliding followed
by mode I debonding in transverse tension: and ¢ b) fiber cracking and
mode Il debonding and sliding in longitudinal tension.

Transverse

in the present composite, a material model based on
I, = 0 is assumed but with frictional sliding.

Residual stress is another important feature of the
model. Thermal expansion misfit between the fiber and
matrix is insufficient to cause matrix yielding on cool-
ing® and, consequently, elastic solutions may be used.
The longitudinal misfit dominates the axial residual stress

METALLURGICAL TRANSACTIONS A

in the matrix, p, which is spatially quite uniform and is
given for the concentric cylinder model by'*?

p A [E] fdaAT

(1]

E,, l\x E, (l - Vm)
where E is the longitudinal composite modulus,
E=E.(1~-N1+ESf 12}

and the A, are given by (v = ¢, = )
AMA={t- -E/E) ~»)/2
~(EJEW O = ) (3]
A,=1-(l - EJE)/2
For the present composite’”) (Aa = § x 107°C™'. AT =
900 °C), p = 400 MPa, consistent with finite element
calculations' and with X-ray measurements."?!
The radial and tangential stresses in the matrix are

spatially nonuniform. but the compressive stress g nor-
mal to the interface is given simply by!!*
g  (1—-f)AaldT
E,,, ZA I(l - vm)
which for the present composite is ¢ = —300 MPa.
Finally, the fibers are considered to be elastic and have
strength properties governed by weakest link statistics.
Furthermore, the fibers are regarded as noninteracting,

because cracks in the fiber dissipate local stress concen-
trations by debonding and sliding along the interface.

(4]

B. Elastic Properties

The effective elastic properties for a bonded interface
and elastically isotropic fibers, based on the properties
of the fibers and the matrix listed in Table 1, are cal-
culated by using the homogenization method.!"! It is ap-
parent that the calculated and measured elastic properties
are relatively close, except for an appreciable discrep-
ancy in the transverse Young's modulus, E;,. This dis-
crepancy is addressed by allowing the interface to debond
in mode II and then slide at a characteristic sliding stress
1,. For transverse tension, 7, is expected to be small be-
cause the applied load reduces the stress normal to those
segments of interface susceptible to sliding (Figure 13).
In the limit 7, — 0, numerical calculations"*! yield a
transverse modulus similar to the measured value
(Table I). The sliding interface mode] must also be con-
sistent with the result that the shear modulus is the same
as that for a bonded interface. In the limit 7, ~ 0, the
calculated shear modulus is much smaller than the mea-
sured value (Table I). It is thus presumed that, in shear,
the stress normal to the interface on the sliding segments
is essentially unchanged such that the sliding stress 7,
has sufficient magnitude to inhibit sliding and lead to a
modulus essentially the same as that for the bonded
interface. As elaborated below, 71, is inferred from the
shear tests as being of order 90 MPa. Lower values have
been obtained from fiber push-through tests.!'s)

C. Flow Strength

t. Longitudinal tension
The flow strength in longitudinal tension is unaffected
by the interface and can be examined using a simple
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parallel model, with an initial stress p in the matrix.
Yielding of the matrix should iniriate at an applied stress,
o.. given by

. = fEe,+ (L= f)[og = p] 1]

where g, is the matrix yield strain. The flow stress o at
larger strains £ is

o,=fE, + (1 - f)lo,—pl 161

where o, is the matrix flow strength at strain ¢ + p/E,,.
The stress-strain curve (o vs £) predicted using this sim-
ple formulation is plotted in Figure 5 for the cases
p = 0 and p = 400 MPa. The latter agrees well with
the measured curve. The influence of p on or(€) is small:
however. by taking into account experimental scatter,
the experiments consistently indicate the presence of a
compressive residual stress. The effects on the trans.
verse propetties are much more important. as elaborated
below.

2. Transverse tension

The transverse flow strength is sensitive to interface
bonding and also depends on the spatial arrangement of
the fibers. Estimates of the limit flow strength o, of com-
posites with elastic reinforcements having bonded inter-
faces may be expressed in the form!'¢!”

o, = (2/V3)a,[l + Bf) !

where o, is the reference flow strength of the matrix at
plastic strain £, and B is a coefficient that depends on
the work-hardening coefficient, N, and may also depend
on the fiber volume fraction. However, the flow strength
is strongly dependent on the spatial arrangement of the
fibers.!™¥! For typical values of N, B is of order unity
when f = 0.35. However, even when 8 = 0, corre-
sponding to the lower bound, Eq. [7] predicts o, =
940 MPa, substantially in excess of the measured trans-
verse flow strength. The discrepancy is attributed to
interface debonding. To further address the effect of de-
bonding, various elasticity solutions are invoked. The
stress normal to the sliding interface at the interface poles
o, is related to the applied stress g, prior to debonding
by

The bilinear elastic stress-strain behavior. based on the
above value of the separation stress and using Eq. {9} to
estimate the behavior after debonding. is plotied in
Figure 6(a). This curve is comparable to the measured
curve for stresses up to ~350 MPa. At larger stresses.
the slip bands that extend from the cracks in the inter-
faces (Figure 11) interact and further soften the matenial.
A model of this behavior has yet to be developed.

3. Shear

The flow strength in shear also depends on the inter-
face response. For a bonded interface. a rigorous upper
bound for the flow stress when the fibers are randomly
oriented ist*!!

r=(1/V3H +0.17))e,, [10]

This result, plotted in Figure 7. again overestimates the
measured properties. However, given the tendency for
mode II interfacial debonding and sliding. one hypoth-
esis is that the interface slides at stress 7,. In this case.
the flow strength in shear becomes

ke
T=(l/\/’§)A,..U..+§T,(i°A,,) (11}

The experimental curve for the weaker orientation is
consistent with Eq. [11] when a sliding stress 7, =
90 MPa is selected. This value is approximately twice
as high as the saturated sliding stress in pushout tests.''!

D. Ultimate Strength

1. Longitudinal tension

The ultimate strength of the composite in longitudinal
tension is dominated by the properties of the fibers. This
situation arises because fiber cracks induce debonding
and sliding along the A/B interface (Figure 10) and this
negates the concentration of stress in neighboring fibers
(Figure 13). Consequently, the fibers can be treated as
a noninteracting fiber bundle having strength S.. The
composite ultimate strength o, is then

o, =f5. +(t - o, {12

where o,, ,is now the matrix strength at the failure strain

G,
1N -17p, + 6%+ E(9 = 14y, — 9y, + 140,5/)

0’,/ g =

18]

G, G.\ .
5—6v,+—1[8=12p- 6v, + 125} + (—-) (3 — 8y +4y;)
G, G :

Interface separation should initiate when o, > q. Thus,
based on Eqs. [4) and [8]. elastic separation is predicted
to occur at a transverse stress, o, = 200 MPa, consistent
with both the measured onset of nonlinearity (Figure 6)
and with the observations of debonding. Subsequent to
debonding and while the material remains predominantly
elastic, the composite would develop a reduced trans-
verse Young's modulus given approximately (for high
modulus fibers and for f = 0.4) by"®

E,=~E,(1-1.6f) 91
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£,. The strength of the fiber bundle in the composite. S, .
usually has some dependence on the interface sliding
stress, T,. Such sliding allows failed fibers to sustain
stresses through load transfer from the matrix. When this
transfer length is small compared with the specimen gage
length, L,, multiple fiber failures are possible, leading
to an ultimate tensile strength independent of L. with

S. given by
27,L,

1/im+ 1)
sl )
LS R(m + 2) m+2
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where S, and L, are scale parameters and m the shape
parameter in the Weibul] distribution. Conversely. when
only partial load transfer occurs within the gage length.
S. decreases as L, decreases in approximate accordance
with the fiber bundle solution,!*!

*Note that S, = $/T1tm + 1)/m]. where T is the gamma function
and § is the mean strength for fiber having length L,.

S, = SolLo/meL )" [14]

To identify the relevant composite failure rnode. the
transfer length on each side of a failed fiber i< given by!*

= R(S,/21,) [15)

where S; is the nominal stress on the fibers at the ulti-
mate strength of the composite. With S, = 3.5 GPa and
7, = 90 MPa, Eq. {15] gives € = 1.5 mm. The total slip
length, 2€ = 3 mm, is thus comparable to the specimen
gage length, L, = 6.25 mm, indicating that the fiber
bundle solution (Eq. [14]) is more likely to apply. In-
deed, the ultimate strength predicted from Eq. [14],
o, = 1870 MPa, is similar to the measured value
(Figure 5). However, it is important to appreciate that
Eq. {13] is expected to become more relevant at larger L.

Load transfer lengths from failed fiber within the load-
ing span used in the three-point bending tests would again
be in the range indicative of a gage length dependence,
qualitatively consistent with the greater strength mea-
sured in bending than in tension. Furthermore, a stan-
dard weakest link analysis predicts a ratio A of the bending
to the tensile strength given by

A= [2m + DV,/V, " [16)

where V, and V, are, respectively, the gage volume in
tension and the volume between the loading points in
bending. For the present case, A = 1.47, compared with
a measured ratio of 1.4.

Transverse tension

The ultimate strength in transverse tension is preceded
by the formation of cracks in the reaction product layers
(Figure 11(c)). These cracks, in turn, induce shear bands
in the matrix. Such observations suggest a strength con-
trolled by the coalescence of the cracks in the reinforce-
ments by ductile failure of the intervening matrix. Should
this hypothesis apply, the transverse strength would be
influenced by the fiber diameter (the crack size), the ma-
trix toughness, and the fiber volume fraction. However,
the following simple model based only on the matrix
strength apparently agrees quite well with the measured
composite strength. The matrix ligament caused by de-
bonding, subject to plane strain in the fiber direction,
should fail of a stress o, given by

0. = (2/V3)a,.A, {171

where o,,,, is the ultimate strength of the matrix and A,
is the area fraction of matrix on the transverse fracture
plane. Noting that o,,, = 950 MPa and A, = 0.4, the
transverse strength given by Eq. [15] is o,, = 430 MPa
compared with a measured value of 420 MPa. This
agreement suggests that the matrix is sufficiently ductile
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that the cracks in the reinforcements do not act as frac-
ture flaws. However, further study of the transverse
strength is needed to thoroughly investigate this impor-
tant implication.

Vi. CONCLUDING REMARKS

The longitudinal properties of a Ti-15-3 composite
reinforced with SCS-6 SiC fibers are consistent with
simple models in which the strength is dominated by the
bundle properties of the [ibers. All other properties are
strongly influenced by the fiber/matrix interface and by
the presence of residual stress. The experimental mea-
surements are qualitatively consistent with an interface
model wherein debonding occurs readily in both
modes I and Il and frictional sliding proceeds over the
debonded surfaces. Furthermore, sliding appears to be
influenced by the normal compression at the interface.
suggestive of a Coulomb friction law. These interface
features cause the composite flow strength in both trans-
verse tension and shear to be appreciably lower than the
matrix flow strength.

Residual stress has effects on several properties. These
stresses change as the composite is subject to various
thermal and mechanical loadings, causing such proper-
ties to depend on the thermomechanical history of the
material. In the as-processed state, the interface is sub-
ject to normal compression. This stress suppresses initial
debonding in transverse tension and inhibits sliding in
shear loading. Consequently, the composite exhibits bi-
linear elastic behavior in fransverse tension.
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Introduction

This review is intended to focus on ceramic matrix composite materials.
However, the creep models which exist and which will be discussed are generic in the
sense that they can apply to materials with polymer, metal or ceramic matrices. Only a
case by case distinction between linear and nonlinear behavior separates the materials
into classes of response. The temperature dependent issue of whether the fibers creep
or do not creep permits further classification. Therefore, in the review of the models, it
is more attractive to use a classification scheme which accords with the nature of the
material response rather than one which identifies the materials per se. Thus, this
review could apply to polymer, metal or ceramic matrix materials equally well.

Only fiber and whisker reinforced materials will be considered. The fibers and
whiskers will be identified as ceramics but with different characteristics from the
matrix. As noted above, at certain temperatures, the reinforcement phase will not be
creeping and then it will be treated as elastic or rigid as appropriate to the model. At
higher temperatures, the reinforcement phase will creep, and that must be allowed for
in the appropriate model. On the other hand, the case of creeping fibers in an elastic
matrix will not be considered, although certain of the models have a symmetry between
fiber and matrix which permits such an interpretation. The models reviewed will be for
materials with long fibers, broken long fibers and short fibers or whiskers. Aligned
fibers and two and three dimensional reinforcement by long fibers will be discussed.
However, general laminate behavior will not be a subject of this review.

The material behaviors considered will include linear elasticity plus linear or
nonlinear creep behavior. The nonlinear case will be restricted to power law rheologies.
In some cases the elasticity will be idealized as rigid. In ceramics, it is commonly the
case that creep occurs by mass transport on the grain boundaries!. This usually leads to
a linear rheology. In the models considered, this behavior will be represented by a

continuum creep model with a fixed viscosity. That is, the viscosity is strain rate
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independent, although it will in general be temperature dependent. Thus, the mass
transport per se will not be explicit in the models. In some situations, even though the
mechanism is mass transport, the creep behavior involves a power law response with a
low exponent. Such a case is polycrystalline alumina at certain temperaturesl. This
explains the inclusion of power law models in this review. An additional constitutive
feature considered in this review is mass transport on the interface between the fiber
and the matrix. This path can be a faster route for diffusion than the grain boundaries
within the matrix. Therefore it merits a separate treatment as a mechanism for creep. A
rudimentary model for the progressive breaking of reinforcements will be discussed.
Creep void growth and other types of rupture damage in the matrix and the fiber will,
however, be excluded from consideration.

Because the creep behavior of a ceramic composite often has a linear rheology,
the behavior of the composite usually can be represented by an anisotropic viscoelastic
constitutive law. Thus, a rather general model for such composites involves hereditary
integrals with time dependent creep or relaxation moduli23 with a general anisotropy.
the parameters for the law can be determined through creep and relaxation tests, but a
multiplicity of experiments are required to evaluate all the functions appearing in a
general anisotropic law. As a consequence, some guidance from micromechanics is
essential for the generalization of the results. In this review, the focus will be on the
micromechanics based models and the hereditary integral methods will not be
considered. However, the micromechanics models can, if desired, be recast in the
classical viscoelastic form. It should be noted that there exists a vast literature on the
linear elastic properties of reinforced materials. These elasticity models can be
converted into creep models by use of standard methods of linear viscoelasticity?. This
approach will be avoided in this review even though it can provide effective creep
models for ceramic matrix composites. Instead, the focus in this chapter will be on

models which involve nonlinearities or have features such as interface diffusion which
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are not accounted for when linear elastic models are converted to linear viscoelastic

constitutive laws.

Material Models
All phases of the composite material will be assumed to be isotropic. The creep

behavior of a ceramic will be represented by the law

1

. 1 . 35 =n- :
E—Sij + '9—K81} Ok + EB " 1 Si’- + aSiiT

Ejj M
where £ is the strain rate, O is the stress, § is the stress rate, G is the elastic shear
modulus, K is the elastic bulk modulus, 8; is the Kronecker delta, B is the creep
rheology parameter, n is the creep index, S is the deviatoric stress and the effective

stress G is defined by
5= 355, ?

a is the coefficient of thermal expansion and T is the rate of change of temperature. In
all expressions the Einstein repeated index summation convention is used. xj, x2 and x3
will be taken to be synonymous with x, y and z so that 611 = Oxx etc.. The parameter B
will be temperature dependent through an activation energy expression and can be
related to microstructural parameters such as grain size, diffusion coefficients etc. on a
case by case basis depending on the mechanism of creep involved!. In addition, the
index will depend on the mechanism which is active. In the linear case,n=1and Bis
equal to 1/31 where 1 is the linear shear viscosity of the material. Stresses, strains and
material parameters for the fibers will be denoted with a subscript or superscript f and
for the matrix with a subscript or superscript m.
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Various models will be used for the interface between the fiber and the matrix.
For bonded interfaces, complete continuity of all components of the velocity will be
invoked. The simplest model for a weak interface is that a shear drag equal to T
opposes the relative shear velocity jump across the interface. The direction of the shear
drag is determined by the direction of the relative velocity. However, the magnitude of
1T is independent of the velocities. This model is assumed to represent friction occurring
mainly because of roughness of the surfaces or due to a superposed large normal
pressure on the interface. Creep can, of course, relax the superposed normal stress over
time, but on a short time scale the parameter T can be assumed to be relatively invariant.
No attempt will be made to account for Coulomb friction associated with local normal
pressures on the interface.

On the other hand, a model for the viscous flow of creeping material along a fiber
surface is exploited in some of the cases covered. This model is thought to represent the
movement of material in steady state along a rough fiber surface and is given by
(McMeeking, to be published)

=n-1

vkl = B & n; 05 (815 — Ny ;) G)
where vRel js the relative velocity of the matrix material with respect to the fiber, Bis a
rheology parameter proportional to B but dependent also on roughness parameters for
the fiber, n is the unit outward normal to the fiber surface and the stress is that
prevailing in the creeping matrix material. The law simply says that the velocity is in
the direction of the shear stress on the interface but is controlled by power law creep.
When there is mass transport by diffusion taking place in the interface between

the fiber and the matrix, the relative velocity is given by!
Rel ;
v € = -n (_Y.!) (4)
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where j is the mass flux of material in the plane of the interface and V is the divergence
operator in 2-dimensions also in the plane of the interface. The mass flux in the
interface is measured as the mass per unit time passing across a line element of unit

length in the interface. The flux is proportional to the stress gradient so that

where Dis an effective diffusion coefficient and

Onn = n.O.N (6)

is the normal stress at the interface. Combination of eq. (4 & 5) for a homogeneous

interface gives

!Re] =-n D V2 Onn. 7

The diffusion parameter D controls mass transport in a thin layer at the interface and so

its relation to other parameters can be stated as!

3D, Q

? kT 8

where 3 is the thickness of the thin layer in which diffusion is occurring, Dy, is the
diffusion coefficient in the material near or at the interface, {2 is the atomic volume, k is
Boltzmann's constant and T is the absolute temperature. The diffusion could occur in
the matrix material, in the fiber or in both. The relevant diffusion parameters for the

matrix, the fiber or some weighted average would be used respectively.
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It is worth noting that the "rule of mixtures" for stress, stress rate, strain and

strain rate is always an exact result in termus of the averages over the phasest. That is
Gj = f o + 1-D O] ©)
gj = f & + (1-DE] (10)

etc. where the unsuperscripted tensor variables are the averages over the composite
material and the superscripted variables are the averages over the fibers (f) and the
matrix (m) respectively. The volume fraction of the fibrous phase is f. The result
applies irrespective of the configuration of the composite material, e.g. unidirectional or
multidirectional reinforcement. However, an allowance must be made for the
contribution arising from gaps which can appear such as at the ends of fibers. The
difficulty in the use of the rule of mixtures is the requirement that the average values in

the fibers and in the matrix must be known somehow.

Materials with Long Intact Fibers

Creep laws for materials with long intact fibers are relevant to cases where the
fibers are unbroken at the outset, and never fracture during life. As a model, it also
applies to cases where some but not all of the fibers are broken so that some fibers
remain intact during service. Obviously these situations would occur only when the
manufacturing procedure can produce composites with many or all of the fibers intact.

In the problem of the creep of materials with intact unidirectional fibers, as
shown in Fig. 1, most of the insights arise from the compatibility of the strain rates in

the fibers and in the matrix. When a stress O; is applied to the composite parallel to
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the fibers, the strains and strain rates of the fibers an.. ..1e matrix in the z-direction must

be all the sameS. This gives rise to a creep law of the form

. Gzz . ¢ -
£,, = 2 +¢,,  +0;p T
zz EL 2z L a1

and

" . VL Gzz . ¢ >
€., == —~———=+ €. . +ar T
o T Eyy EL x> T T (12)

where EL is the longitudinal composite modulus, £, is the longitudinal creep strain
rate, 0t is the longitudinal coefficient of thermal expansion, vy, is the Poisson'’s ratio for
the composite relating t-ansverse elastic strain to longitudinal stress, &£, is the
transverse creep strain rate and Oit is the transverse coefficient of thermal expansion.
The temperature is taken to be uniform throughout the composite material. Evolution
laws for the creep rates are required and these laws involve the stress levels in the
matrix and fibers. Thus, in turn, evolution laws are required for the matrix and fiber
stresses.

The exact iawc baszd on continuum analysis of the fibers and the matrix would
be very complicated. The analysis would involve equilibrium of stresses around and in
the fibers and compatibility of matrix deformation with the fiber strains. Furthermore,
end and edge effects near the free surfaces of the composite material would introduce
complications. However, a simplified model can be developed for the interior of the
composite material baced on the notion that the fibers and the matrix interact only by
having to experience the same longitudinal strain. Otherwise, the phases behave as two
uniaxially stressed materials. McLean3 introduced such a model for materials with

elastic fibers and he notes that McDanels, Signorelli and Weeton® develop~d the model
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for the case where both the fibrous and the matrix phase are creeping. In both cases, the

longitudinal parameters are the same, namely

EL = f Ef + (1= Em (13)
oL = [fEf0f + (1 - EmOml/EL (14)
€5, = [fEtBsG;' + (1~ EmBm Oo™/EL. (15)

When the fibers do not creep, Bt is simply set to zero. The longitudinal stress Oz in the
fibers and the matrix are denoted Os and G, respectively. To accompany eq. (13-15),

evolution laws for the fiber and the matrix stresses are required. These are

6f = Ef(8zz — BrOg' — oy (16)
and

Sm = Em®zz -~ BmOp® - QD). an

Indeed, combining these by the rule of mixtures, eq. (9), leads to eq. (13) to (15).
Since the fibers and the matrix do not interact transversely, the model implies

that no transverse stresses develop in the matrix or the fibers. The rule of mixtures,

eq. (10), then leads to

<
u

fo + (l“f)Vm (18)

ar

]

far+ 1) om + £(1-1£) (O - Oy) (Ve Em ~ Vi Ef)/EL (19)
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and

&y = -1 1-DBnon - 1B o'
+£(1-0 (B Op - BfO;) (V§ Em — Vm E/EL. (20)

The data suggest that the elastic parameters in this model are reasonably good to first
order? and experience with plasticity calculations®9:10 indicates that there is little plastic
constraint between fibers and matrices at low volume fractions. Thus, the model should
work reasonably well for any creep exponents at low volume fractions of fibers.

Indeed, McLean® has used the isothermal version of the model successfully to explain
longitudinal creep data for materials with non-creeping fibers.

Of interest, is the prediction of the uniaxial stress model when the applied stress
and the temperature are held constant. The governing equations (19), (16) & (17) then
have the feature that as time passes the solution always tends towards asymptotic
values for stress in the fibers and the matrix. The evolution of the matrix stress occurs

according to

1 1-f o—-(1-f)on, ]"f

A s B om -
[Em +fEf]°"’ m O B'[ f @1)

and it can be shown that for any initial value of matrix stress, the matrix stress rate
tends to zero. Therefore, the matrix stress tends toward the value which makes the
right hand side of eq. (21) equal to zero. This can be solved easily for four common
ceramic cases. One is when both matrix and fibers creep with a linear rheology so that
both creep indices are equal to one. In that case the stresses tend towards the state in

which
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ch

Om =

fB,, + (1-f)B; (22)
and
o = Bnh o
f fB,, + (1-f)By. (23)

Another case is when the fibers creep linearly and the matrix creeps with an index of 2.

Then the matrix tends towards a stress

o = (&) (.@&)gm—f)z _1f
m B, B ) f 4f2 2f 8

and of course Om = [G - (1 -f) Oml/f. The opposite case of a linear matrix and

quadratic fibers is such that the fibers tend towards the stress

O (e
f E; Bm) 1-f  4(1-f)> 2(1-f) (25)

and Om = [0 —f 0] /(1 - f). Finally, when the fibers do not creep, the matrix stress tends

towards zero and the fiber stresses approach G/(1 - f).
In the latter case, the transient stress can be stated as well. The isothermal result

for constant G is®

1-n
n-1)fE{E. Bt 1
cll\ (t) = {( )E: - + ]n—l}

[om (0) (26)
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whenn =1 and
Om () = Om(0) exp (-f Ef Em B t/ED (27)

when n = 1. The subscript on the creep rheology parameter for the matrix has been
dropped and the unsubscripted B refers to the matrix henceforth. In both cases

Of =[0 - (1-f) 6ml/f and the composite strain is G¢/Es. The stress at time zero would
be computed from the prior history with t = 0 being the time when both the temperature
and the applied stress become constant. For example if the temperature is held constant
at creep levels until equilibrium is achieved and then the load is suddenly applied,

Om (0) = 6 Em/EL. To the extent that there are any thermal residual stresses att = 0,
they will contribute to O (0). However, eq. (26) & (27) make it clear that thermal

residual stresses will be relaxed away be creep.

Steady Transverse Creep with Well-Bonded Elastic Fibers The previous paragraph

has made it clear that if there are elastic fibers and a constant macroscopic stress is
applied, the longitudinal creep rate will eventually fall to zero. With constant
transverse stresses applied as well, the process of transient creep will be much more
complicated than that associated with eq. (27) and (28). However, it can be deduced
that the longitudinal creep rate will still fall to zero eventually. Furthermore, any
transverse steady creep rate must occur in a plane strain mode. During such steady
creep, the fiber does not deform further because the stress in the fiber is constant. In
addition, any debonding which might tend to occur would have achieved a steady level
because the stresses are fixed.

For materials with a strong bond between the matrix and the fiber, models for

steady transverse creep are available. The case of a linear matrix is represented exactly

4H:MS26(September 1, 1992)10:25 AM/mef

12




13

by the effect of rigid fibers in an incompressible linear elastic matrix and is covered in
texts on elastic materials”.11,12, For example, the transverse shear modulus, and
therefore the shear viscosity, of a material containing up to about 60% rigid fibers in a

square array is approximated well by1l

1+2f Go

G =
T 1-f . (28)

It follows that in the coordinates of Fig. 1, steady transverse creep with well bonded

fibers obeys

£ = =€ = 2(l-f)(cs -C )

Yy x> 4 \1+2F)V 7@ (29)
and

by = é—q(l—f)c

with £, = 0. A material with fibers in a hexagonal array will creep slightly faster than

this. Similarly, creep in longitudinal shear with fibers in a square array can be

approximated well by

£ = g’E(l——{)c

xz 2 \1+f) 2 (31)
and

€ = §-§(1——f-)o

yz 2 \1+f) Y& (32)
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There are few comprehensive results for power law matrices. Results given by
Schmauder and McMeeking!!for up to 60% by volume of fibers in a square array with a

creep index of 5 can be represented approximately by

Exx = —&yy = 042B |Oxx - Oyyl* (O - Oyy)/S° (33)
where €22 = Exy = Oxy = 0
S =(1+)/(1-9 (34)

is the creep strength, defined to be the stress required for the composite at a given strain
rate divided by the stress required for the matrix alone at the same strain rate. The
expression in eq. (34) is only suitable for n = 5. The result in eq. (33) when f = 0 is the
plane strain creep rate for the matrix alone. Results for Oxy # 0 are not given because of
the relative anisotropy of the composite with a square array of fibers. Relevant results
for other power law indices and other fiber arrangements are not available in sufficient

quantity to allow representative expressions to be developed for them.

Three-Dimensional Continuous Reinforcement This configuration of reinforcement

can be achieved by the use of a woven fiber reinforcement or interpenetrating networks
of the two phases. Another possibility is that random orientation of whiskers produces
a percolating network and even if the whiskers are not bonded together, this network
effectively forms a mechanically continuous phase. In the case of woven
reinforcements, there may be some freedom for the woven network to reconfigure itself
by the straightening of fibers in the weave or because of void space in the matrix. Such
effects will be ignored and it will be assumed that the fibers are relatively straight and

that there is little or no void space in the matrix. A straightforward model for these
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materials is that the strain rate is homogeneous throughout the composite. The

response is then given by

Gy = 2G eij + (K - % C)sijékk - 3K&T5,]

~3fG¢By&;" Sy = 31~ G B Gy ST (35)
where
G =fGt+ (1-HGm (36)
K = fK¢ + 1-pKn 37)
and
o = fos K¢ + (1= 0om K. (38)

The evolution of the fiber and matrix average stresses appearing in the last two terms in
eq. (35) is given by eq. (35) with f = 1 and f = 0 respectively. It is of interest that the
constitutive law in eq. (35) is independent of the configuration of the reinforcements
and the matrix. As a consequence, the law is fully isotropic and therefore may be
unsuitable for woven reinforcements with unequal numbers of fibers in the principal
directions. In addition, the fully isotropic law may not truly represent materials in
which the fibers are woven in 3 orthogonal directions. Perhaps these deficiencies could
be remedied by replacing the thermoelastic part of the law with an appropriate
anisotropic model. A similar alteration to the creep part may be necessary but no

micromechanical guidance is available at this stage.
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If the composite strain rate is known, the composite stress during steady state
isothermal creep can be computed from the rule of mixtures for the stress, eq. (9). This

gives

(39)
where € must be deviatoric (i.e. £k = 0) and
+ _ 2. .
£ = -3— eij eii . 40)

A hydrostatic stress can be superposed, but it is caused only by elastic volumetric strain
of the composite. The result in eq. (39) is, perhaps, not very useful since it is rare that a
steady strain rate will be kinematically imposed. When both fiber and matrix creep, the
steady solutions for a fixed stress in isothermal states are quite complex but can be
computed by numerical inversion of eq. (39). The solution can however be given for the
isothermal case where the fibers do not creep. (For non-fiber composites, this should be
interpreted to mean that one of the network phases creeps while the other does not.)

The matrix deviatoric stress is then given by

St (t) = ?_;’p (©) [3(n -1)fG¢ G, Bt/G + (6 (0))"" ]‘J“
J n (0) 41)
whenn#landforn=1
S (0 = S5 (0) exp (-3f Gt Gm B t/G). 42)
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The subscripts on B and n have been dropped since only the matrix creeps. The
interpretation of time and the initial conditions for eq. (41) & (42) are the same as for

eq. (26) & (27). The fiber deviatoric stresses are given by

sk = (8 - 1-H STVt 43)
and the composite deviatoric strain ejj is therefore

ejj = Sij/2Gy. 44)
The volumetric strains are invariant and given by

€k = Okk/3K. 45)

As expected, the matrix deviatoric stresses will be relaxed away completely.
Thereafter, the "fiber” phase sustains the entire deviatoric stress. As a consequence, in

the asymptotic state
S§ = Si/f (46)
and the composite strain will be given by (44) to (46) as
O 1 1 )1
€ = —— +|—= - —— |=Oyx O
§ 7 2G (31{ 2fc;,)3 K 47)
It follows that in uniaxial stress, with Ozz = G and €z = €, the asymptotic result will be
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e = |——+—|o
3fG¢ 9K . 48)

This result indicates that the composite will have an asymptotic modulus slightly stiffer
than f E¢ because the matrix phase is capable of sustaining a hydrostatic stress.

Two-Dimensional Continuous Reinforcement This configuration of reinforcement
occurs when fibers are woven into a mat. It could also represent whisker reinforced
materials in which the whiskers are randomly oriented in the plane, especially if
uniaxial pressing has been used to consolidate the composite material. In the case of the
whisker reinforced material, it is to be assumed that their volume fraction is so high that
they touch each other. The whiskers have either been bonded together, say by
diffusion, or the contact between the whiskers acts, as is likely, as a bond even if tnere is
no interdiffusion.

In a simple model for this case, which as in the 3-d case ignores fiber
straightening and anisotropy of the fibrous network, a plane stress version of eq. (35)
can be developed. As such, it can only be used for plane stress states. Consider the x-y
plane to be that in which the fibers are woven or the whiskers are lying. The strain rates
in this plane are taken to be homogeneous throughout the composite material and 62,
Oxz and Oy are taken to be zero. The resulting law is

daﬂ = ZG[GGB + —"Baﬂ w - -i-—aTSGB

—L <845 S%,

_3fo3,—“”[5£,3 i vf)

~3(1-f)Gpy By, 8207 [sg‘p + (1—:"\',-‘-;% s;‘;]
m

49
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where Greek subscripts range over 1 & 2 and where

<

= [fcf M +(1—f)Gm—"—"\—]/‘G’

1-v 1-v¢ 1-vp (50)
and
- 1+ vy 1+v 1+V =
a = |[fo; G +(1-fla, G m ( G)
[ ot fl-Vf ( ) m =m l—vm]/ 1-V ’51)

The fiber and matrix evolution laws for stress are identical to eq. (49) withf=0and f=1
respectively. Being isotropic in the plane, this law suffers from the same deficiencies as
the 3-d version regarding the orthotropy of the woven mat and any inequality between
the warp and the woof. As before, this could be remedied with an anisotropic version
of the law.

In steady state isothermal creep, the relationship between in plane components of

stress and in plane components of strain rate are given by

l-nt 1-n

caﬁ = _Z._f_(i)n‘ +_1.:i(_é- o (sab+ew8aﬁ)
3| B; | By By, (B 2

with Ox; = Gyz = Oz = 0 and with £ given by eq. (40) but with &xz =&y, =0. Asin the
3-d case, this must be inverted numerically to establish a steady state isothermal creep
rate for a given imposed stress.

When the fibers are elastic and non-creeping, the isothermal behavior at fixed
applied plane stress is given in terms of the deviatoric stress by eq. (41) or (42) and
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eq. (43). The expression for the deviatoric composite strain, eq. (44), still applies.

However, the composite strain obeys

. 3 G —n-1 (1+V )(I—V)
Z(1-f)=Bo" m s
Eyr 2( )G Om (1+9)(1-vy) 7 (53)
and
&,y = —[f Yi_ 4 (a- )1 Vm ] (1 f)(1 2Vm) g G- gm
= 1-vg ~Vm ( m) m W. (54)

The latter result indicates that the volumetric strzins can be relaxed to some extent by
matrix creep. This contrasts with the 3-d case where complete compatibility of strains
precludes such relaxation. The extent to which the relaxation occurs has not yet been
calculated. However, if it is assumed that the relaxation can be complete so that the
matrix volumetric strain is zero, then the fiber stress tends towards Gqp/f and therefore

the composite strain approaches

eij = ELY.L oij —_ ﬂ_ 81) o-w
fE, fE; (55)

which, of course, is restricted to plane stress. It can be seen that in uniaxial stress, the
effective asymptotic modulus would now equal f E¢. A properly calculated solution for

€k (1) is required to investigate whether this result holds true.
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Uniaxial Reinforcement with Long Brittle Fibers

The reinforcement configuration of interest now is once more that depicted in
Fig. 1 and the loading will be restricted to a longitudinal steady stress Gz;. The
possibility will be taken into account that the fibers might be overstressed and therefore
could fail. Only elastic fibers which break in a brittle manner will be considered,
although ceramic fibers are also known to creep and possibly rupture due to grain
boundary damage. Frictionally constrained fibers only will be considered since well
bonded fibers will fail upon matrix cracking and vice versa. The case where the fibers
have a deterministic strength S can be considered. In that situation, the fibers will
remain intact when the fiber stress is below the deterministic strength level and they
will break when the fiber stress exceeds the strength. The fracturing of the fibers could
occur during the initial application of the load, in which case elastic analysis is
appropriate. If the fibers survive the initial application of the load, then subsequent
failure can occur as the matrix relaxes according to eq. (26) or (27) and the fiber stress
increases. Thus the time elapsed before first fiber failure can be estimated basec on
eq. (26) or (27) by setting the fiber stress equal to the deterministic strength. This

predicts that failure of a fiber will occur when
Om = [0 - £S}/(1-f) (56)

from which the time to failure can be 'computed through eq. (26) or (27). The failure of
one fiber in a homogeneous stress state will cause a neighboring fiber to fail nearby
because of the fiber/matrix shear stress interaction and the resulting localized load
sharing around the broken fiber. Thus a single fiber failure will tend to cause a
spreading of damage in the form of fiber breaks near a single plane across the section.
This will lead to localized rapid creep and elastic strains in the matrix near the breaks
perhaps giving rise to matrix failure. It follows therefore that tertiary failure of the
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composite will tend to occur soon « ter the occurrence of one fiber failure when the fiber
strength is deterministic.

Tertiary failure processes akin to this have been modelled by Phoenix and
coworkers13-15 in the context of epoxy matrix composites. Indeed, they show that such

tertiary failures can occur even when the fiber strength is statistical in nature. This

‘mechanism will not be pursued further in this paper but some other basic resulits

considered on the assumption that when there is a sufficient spread in fiber strengths
such tertiary failures can be postponed well beyond the occurrence of first fiber failure
or indeed eliminated completely. Thus, attention will be focused on fibers which obey
the classical ¢Veibull model that the probability of survival of a fiber of length L stressed

to a level Oy is given by

L (o™
P, = expli—L—(—Sf—) ] -
g

where Lg is a datum gauge length, S is a datum strength and m is the Weibull modulus.
Clearly the resuits given below can be generalized to account for variations on the
statistical form which differ from eq. (57). However, the basic ideas wili remain the

same.

Long Terr: Creep Threshold Consider a specimen of length Ls containing a very large
number of wholly intact fibers. A stress G is suddenly applied to the specimen parallel
to the fibers. The temperature has been raised to the creep level already and i- row
held fixed. Upon first application of the load, some of the fibers will break. The sudden
application of the load means that the initial response is elastic. This elastic behavior
has been modelled by Curtin16é among others but details will not be given here. If the

applied stress exceeds the ultimate strength of the composite in this elastic mode of
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response, then the composite will fail and long term creep is obviously not an issue.
However, it will be assumed that the applied stress is below the elastic ultimate
strength and therefore creep can commence. It should be noted, however, that matrix
cracking can occur in the ceramic matrix and the characteristics of creep relaxation
would depend on the degree of matrix cracking. However, this aspect of the problem
will not be considered in detail. For cases where there is matrix cracking and for which

the specimen length Ly is sufficiently long, Curtinl6 has given the theoretical prediction

that the ultimate elastic strength is

Sy = fldLgS™T/D (m + DIV (m + 1)/(m +2) (58)

where T is the interface shear strength between the fiber and the matrix and D is the
diameter of the fibers. The interface shear strength is usually controlled by friction. For

specimens shorter than J, the ultimate brittle strength exceeds S, where & is given

by16

8 =15 L};’ M p/2 g/ meD), (59)

This critical length is usually somewhat less than the datum gauge length.

When the applied stress © is less than Sy, creep of the matrix will commence after
application of the load. During this creep, the matrix will relax and the stress on the
fibers will increase. Therefore, further fiber failure will occur. In addition, the process
of matrix creep will depend on the extent of prior fiber failure and, as mentioned
previously, on the amount of matrix cracking. The details will be rather complicated.
However, the question of whether steady state creep or, perhaps, rupture will occur or
whether sufficient fibers will survive to provide an intact elastic specimen can be

answered by consideration of the stress in the fibers after the matrix has been assumed
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to relax completely. Clearly, when the matrix carries no stress, the fibers will at least fail
to the extent they do in a dry bundle. It is possible that a greater degree of fiber failure
will be caused by the transient stresses during creep relaxation, but this effect has not
yet been modelled. Instead, the dry bundle behavior will be used to provide an initial
estimate of fiber failure in these circumstances.

Given eq. (57), the elastic stress strain curve for a fiber bundle is

m
6 = fEfe exp[—{’—s—(E—g—E) }
g . (60)

Thus when a stress O is applied to the composite, creep will occur until the strain has
the value consistent with eq. (60). Numerical inversion of eq. (60) can be used to

establish this strain. The stress-strain curve in eq. (60) has a stress maximum when

1
REY
E¢{mL, 61)

with a corresponding stress level given by

1
L, \=
o, = fS(mi) exp(-1/m)

s (62)
This result is plotted as a function of m in Fig. 2. If 6 < O, the composite will creep
until the strain is consistent with eq. (60) and thereafter no further creep strain will
occur. Of course, the non creeping state will be approached asymptotically. (It should
be noted that due to possible fiber failure during the creep transient, the true value for
G may lie below the result given in eq. (62).) For an applied composite stress equal to
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or exceeding G, creep will not disappear with time because all of the fibers will
eventually fail and the strain will continue to accumulate.

The critical threshold stress for ongoing creep given by eq. (62) is specimen
length dependent. For very long specimens, the threshold stress is low whereas short
specimens wiil require a high stress for ongoing creep to continue without limit. On the
other hand, the ultimate brittle strength as given by eq. (58) for a composite specimen
longer than &, is specimen length independent. Thus there are always specimens long
enough so that O is less than Sy. This means that the specimen can be loaded without
failure initially and if G exceeds O, the specimen will go into a process of long term
creep. (It should be remembered, however, that this model is based on the assumption
that tertiary failure is delayed and does not occur until a substantial amount of matrix
creep has occurred.) For shorter specimens, the relationship between G and Sy
depends on the material parameters appearing in eq. (58) and (62). However, for
typical values of the parameters, O is less than Sy so that there is usually a window of
stress capable of giving rise to long term creep without specimen failure when the
specimen length exceeds 8. Typical values for the parameters are given by, among
others, Hild et al.1?. From these parameters, predictions for G¢ can be made. For
example, a LAS matrix composite containing 46% of SiC (Nicalon) fibers (m equals 3 or
4) is predicted to have a value for G between 400 MPa and 440 MPa for a specimen
length of 25 mm whereas its measured ultimate brittle strength is between 660 MPa and
760 MPa. At 250 mm specimen length, the long term creep threshold G is predicted to
fall to the range 185 MPa to 250 MPa. Similarly, a CAS matrix composite with 37% SiC
(Nicalon) fibers (m equals 3.6) in a specimen length of 25 mm is predicted to suffer long
term creep if the stress exceeds 160 MPa whereas the measured ultimate brittle strength
is 430 MPa. For a 250 mm specimen length, this creep threshold is predicted to fall to
85 MPa. Thus ‘tis clear that in some practical cases, applied stresses which are modest

fractions of the elastic ultimate strength will cause long term creep.
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Steady State Creep For specimens which have (i) previously experienced an applied
stress exceeding the long term creep threshold or (ii) which had every fiber broken prior
to testing or service (e.g. during processing) or (iii) which had few fibers intact to begin
with so that initially the long term creep threshold is much lower than G, as predicted
by eq. (62), a prediction of the long term creep behavior can be made. Prior to this state,
there will, of course, be a transient which involves matrix creep and, perhaps, the
fragmentation of fibers. This transient has not been fully modelled. Only a
rudimentary assessment of the creep behavior has been made revealing the following
features.

For those composites initially having some of the fibers intact, there will always
be some which must be stretched elastically. This will require a stress which will tend
towards the value given by eq. (60) with f replaced by f;, the volume fraction of fibers
initially intact. If a relaxation test were carried out, the stress would asymptote to the
level predicted by eq. (60). The remaining broken fibers will interact with the matrix in
a complex way, but at a given strain and strain rate, a characteristic stress contribution
can be identified in principle. Details have not been worked out. However, the total
stress would be the sum of the contribution from the broken and unbroken fibers. If
the transient behavior is ignored (i.e. assumed to die away relatively fast compared to

the strain rate) a basic model can be constructed.

Steady State Creep with Broken Fibers First, consider a composite with a volume
fraction f of fibers, all of which are broken. There are two possible models for the
steady state creep behavior of such a material. In one, favored by Mileiko18 and
Lilholt1? among others, the matrix serves simply to transmit shear stress from one fiber
to another and the longitudinal stress in the matrix is negligible. The kinematics of this

model requires void space to increase in volume at the ends of the fibers. However,
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with broken fibers there is no inherent constraint on this occurring. Furthermore, if
matrix cracking has occurred, the matrix will not be able to sustain large amounts of
longitudinal tension and its main role will be to transmit shear from fiber to fiber.
Indeed, matrix cracking will probably promote this mode of matrix flow since there will
be no driving stress for other mechanisms of straining. The other model, favored by
McLean20 and developed by Kelly and Street?! involves a stretching flow of the matrix
between fibers at a rate equal to the macroscopic strain rate of the composite material.
This requires substantial axial stress in the matrix. In addition, volume is preserved by
the flow and there is no need for space to develop at the end of the fiber. The model
requires a considerable matrix flow to occur transporting material from the side of a
given fiber to its end and the injection of matrix in between adjacent ends of the broken
fibers. There is good reason to believe that the Mileiko!8 pattern of flow prevails when
there are broken fibers.

In a version of the Mileiko!8 model in which it is assumed that each of six
neighboring fibers has a break somewhere within the span of the length of a given fiber
but that the location of those breaks is random within the span, the relationship
between the steady state creep rate and the composite stress is (McMeeking,

unpublished work)

€ = g(n ) (D/L)™1 Bon (63)

where L is the average length of the broken fiber segments and

g(n.f) 245[‘/3(2n+1)]“ (14%—‘)

2nf (n-1)
(64)
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whenn #1and
g1, 0 = /0 m/ND. (65)

These functions have been computed for uniform fiber length and based on a hexagonal
shape for the fiber even though interpreted to be circular. That explains why creep
strength goes to infinity at f = 0 rather than at f less than 1. In this creep model, the
influence of both volume fraction and the aspect ratio L/D on the strain rate is clear
with both having a strong effect. As noted, this model could serve as a constitutive law
for the creep of a material in which all of the fibers are broken to fragments of average
length L. In addition, it could be used for short fiber composites which have weak
bonds between the fiber end and the matrix so that debonding can readily occur and
void space can develop as a result. However, the aspect ratio L/D should be large so
that the Mileiko!8 flow pattern will occur and end effects can be neglected‘ when the
composite creep law is computed.

The shear stress transmitted to a fiber is limited to the shear strength 7. Asa

result, the formula given in eq. (63) is valid only up to a composite macroscopic stress of
2nf (L) <
2n+1 \D (66)

for both the linear and nonlinear cases. According to the model, at this level of applied

stress, the shear stress on the fiber interface will start to exceed T. Therefore, at stresses
higher than the value given in eq. (66), the strain rate will exceed the level predicted in
eq. (63). This situation will persist in the presence of matrix cracks up to a composite

macroscopic stress of
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oLmM = fTL/D 67)

at which stress the entire fiber surface is subject to a shear stress equal in magnitude to
T. Then, the mechanism represented by eq. (63) provides an indeterminate strain rate as
in rate independent plasticity. Thus LM can be thought of as a yield stress. This
concept is probably satisfactory for materials with many matrix cracks so that there is
no constraint on stretching the matrix. However, when there are no matrix cracks, the
strain rate is probably controlled by the mechanism which generates void space at the
fiber ends. This has been considered to require negligible stress in the version of the
model leading to eq. (63). For a proper consideration of the limit behavior, the
contribution to the stress arising from void development at the fiber ends should be

taken into account.

The Effect of Fiber Fracture If the stress applied to the composite is increased, the
stress sustained by fibers will increase also. When the probability of survival of fibers
obeys the statistical relationship given by eq. (67), the effect of a raised stress will be to
fracture more fibers, with a preference for breaking long fibers. This will have the effect
of reducing the average fiber length L and therefore raising the strain rate at a given
applied stress as can be deduced from eq. (63). Therefore, the composite will no longer
have a simple power law behavior in steady state creep since the fiber fragment length
will depend on the largest stress which the composite material has previously
experienced. In this regard, the elastic transients will play an important role in
determining the fiber fragment length. However, the average fragment length in steady
state creep will generally be smaller than the average fragment length ansing during
initial elastic response. Therefore, some guidance can be obtained from a model

designed to predict the steady state creep response only.
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For the Mileiko18 model of composite creep leading to the steady state creep rate
for fixed fiber length given in eq. (63), a rudimentary fiber fragment length model gives
(McMeeking, unpublished work)

L = (m+1)[(—“il)i§]m L,

(2n+1)o (68)

subject to L being less than the specimen length. When a stress G is applied to the
composite material and steady state is allowed to develop, the average length for the
fiber fragments is predicted by eq. (68). This model is by no means precise, based as it is
on some approximations in the calculations as well as the notion that all fibers can be
treated as if they had the same length. However, the model conveys the important
notion that the fiber fragment length will fall as the applied stress is increased.

The fiber fragment average length during steady state creep can be substituted
into eq. (63) from which results

£ = h(n,f,D/Lgm,S) B gn+menm ©69)

where h is a rather complicated function of its arguments and can readily be calculated.
A significant conclusion is that the creep index for the composite is no longer just n but
is n+m+nm. Thus a ceramic matrix material with a creep index for the matrix of 1 will
have composite creep index of 2m + 1. In the case of a fiber with a Weibull modulus of
m = 4, the composite creep index will be 9. Similar effects will be apparent in
composites with a nonlinearly creeping ceramic matrix, say with n = 2. It has been
observed that metal matrix composites with noncreeping reinforcements often have a

creep index which differs from that of the matrix522 and the effect is usually attributed
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to damage of the fibers or of the interface. It can be expected that ceramic matrix
composites will exhibit a similar behavior.

It should be noted that the model leading to eq. (69) is incomplete since the stress
required to cause the enlargement of void space at the fiber breaks is omitted from
consideration. At high strain rates this contribution to stress can be expected to
dominate other contributions. Therefore at high stress or strain, the creep behavior will
diverge from eq. (69) and perhaps exhibit the nth power dependence on stress as
controlled by the matrix. The creep rate at these high stresses can be expected to exceed
the creep rate of the matrix at the same applied stress since the void space at the fiber

ends is a form of damage.

Creep of an Initially Undamaged Composite The issue to be addressed in this section

is the long term behavior of a composite stressed above the threshold O, given by

eq. (62) which means that the specimen will creep continuously. As in the immediately
preceding sections, elastic transient effects will be omitted from the model of long term
creep of the initially undamaged composite. No model exists as yet for the transient
behavior, but there is little doubt that the transient behavior is important. Many
composite materials in service at creep temperatures will probably always respond in
the transient stage since the time for that to die away will typically be rather long.
However, a quasi-steady state model, as before, will give some insight into the state
towards which the transients will be taking the material. However, the model
presented below is rather selective, since it includes some elastic effects and ignores
others. It is not known how deficient this feature of the model is. Perhaps the material
state will evolve rather rapidly towards the state predicted below and therefore the

model may have some merit.
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The specimen is composed of a mixture of matrix, unbroken fibers and broken
fibers. The volume fraction of intact fibers is given by eq. (57) with L = L, the specimen
length. To the neglect of transients, the macroscopic stress supported by these intact
fibers is given by eq. (60). The strain will now exceed the level of eq. (61) associated
with the ultimate strength of the fiber bundle. Therefore the stress supported by the
intact fibers will be less than G which is the ultimate strength of the fiber bundle
without matrix. The applied stress exceeds G¢ and the balance in excess of the amount
borne by the intact fibers will cause the composite material to creep.

The steady state result given in eq. (69) will be taken to express the creep
behavior controlled by the broken fibers. The volume fraction of broken fibers is

m
fpb, = 1—-exp [—%‘i(gg—) } 70
g

and a material with this volume fraction of broken fibers creeping at a rate € will

support a stress

Op = [¢/B h (n, fp, D/Lg, m, SIV/P 1)
where

pP=n+m+nm (72)

which comes directly from eq. (69). The total stress sustained by the composite material

is therefore

C = fpOp + Oy (73)
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where O, is the contribution due to unbroken fibers. This leads to

g\ S (74)

¢ = f[¢/Bh(f))"/P + fE, eexp[—%(E—fe—)m}
which can be seen to be a rather nonlinear Kelvin-Voigt material in which the stress is
the sum of a viscous element and an elastic element both of which are nonlinear. As the
strain increases, the second term on the right hand side of eq. (74) (i.e. the term due to
the intact fibers) will diminish and become rather small when only a few unbroken
fibers are left. At the same time, f, will approach f and so the strain rate will approach
the steady state rate for a material in which all of the fibers are broken. However, as
long as a few fibers remain intact, the creep behavior will not precisely duplicate that
for the fully broken material. This transient effect will be compounded by the
redistribution of stress from the matrix to the fibers which will occur both after the first
application of load to the composite material and after each fracture of a fiber, both

effects having been omitted from this version of the model.

Creep of Materials with Strong Interfaces
It seems unlikely that long fiber ceramic matrix composites with strong bonds

will find application because of their low temperature brittleness. However, for
completeness, a model which applies to the creep of such materials can be stated. Itis
that due to Kelly and Street?. It is possible also that the model applies to aligned
whisker reinforced composites since they may have strong bonds. In addition, the

model has a wide currency since it is believed to apply to weakly bonded composites as
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well. However, the Mileiko!8 model predicts a lower creep strength for weakly bonded
or unbonded composites and therefore is considered to apply in that case.

The Kelly and Street?! model uses the notion that creep of the composite material
can be modelled by the behavior of a unit cell. Each unit cell contains one fiber plus
matrix around it so that the volume of the fiber divided by the volume of the unit cell
equals the fiber volume fraction of the composite material. The perimeter of the unit
cell is assumed to be deforming at a rate consistent with the macroscopic strain rate of
the composite material. (It can be observed at this stage that this notion is inconsistent
with the presence of transverse matrix cracks which would make it impossible to
sustain the longitudinal stress necessary to stretch the matrix. This is an additional
reason why the Kelly and Street?! model is not likely to be applicable to unbonded
ceramic matrix materials which are likely to have matrix cracks.) Only steady state
creep of materials with aligned reinforcements which are shorter than the specimen is
considered. The unit cell is assumed to conserve volume. This means thaf material
originally adjacent to the reinforcement must flow around the fiber and finish up at its
end. This phenomenon has to occur when the end of the fiber or whisker is strongly
bonded to the matrix. For this reason, the Kelly and Street2! model is considered to be
relevant to materials with strong bonds.

Kelly and Street?! analyzed this model but their deductions were not consistent
with the mechanics. McMeeking23 has remedied this deficiency for nonlinear materials.
His results for n = 2 are relevant to composite materials with nonlinearly creeping
ceramic matrices which tend to have low creep indices. In that case, the steady state

creep rate is given by eq. (63) withn = 2 and

(75)
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which is invalid for f = 0. When { is close to zero a different form should be used which
accounts for the matrix stress so that the matrix creep law is recovered smoothly s the
volume fraction of fiber disappears. This result is developed below and is given in
eq. (77). Comparison of eq. (75) with eq. (64) for n = 2 will show that the model of Kelly
and Street?! creeps more slowly than the Mileiko18 law confirming that the Mileiko
model is the preferred one when it is kinematically admissible.

It is thought that at higher temperatures, the interface between the fiber and the
matrix becomes weak and sliding occurs according to the constitutive law given in
eq. (3). In that case, creep of a composite with a well bonded interface obeys eq. (63)

withn = 2 and23

g2f) = BV 3(_1._§4;+§f_1fz+lf3)+(1-f)3§
’ 2 5 2 2 10 2DB | 76)

This form for g is identical with that in eq. (75) when B = 0. Thus, sliding at the interface
increases the creep rate at a given stress. If B/B D is very large, signifying a very weak
interface, then the interface term will dominate the matrix term in eq. (76). It should be
noted that there is a relative size effect, with large diameter fibers making sliding less
important.

At large strain rates, stretching of the matrix as it slides past the matrix will
contribute to the creep strength. Under those circumstances, the term g(2, f) in eq. (63)

should be replaced by23

gl2f) = [I/W +(l~f)(%)wr

(77)
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where, in eq. (77), g(2, f) is to be calculated according to eq. (76). Note that as g(2, f)
becomes large (i.e., the composite strain rate is large because either f is small or Bis

large), the composite strain rate will approach
¢ = 3[6/1-DP (78)
which is the rate that would prevail if the fibers were replaced by long cylindrical holes.

Creep of Materials with a Linear Rheology The equivalent correction to the Kelly and
Street2! model for cases where the matrix creep obeys a linear rheology (n = 1) was not
given vy McMeeking?3. However, consideration of this case can be included in a model
with accounts for the ability of a well bonded interface between the fiber and the matrix
t0 sustain sliding according t. eq. (3) and in which mass transport may cause the effect
described by eq. (4). In unpublished work, McMeeking has given the steady state creep

law for the composite material in these circumstances to be

- sty e

where

/() = Z[4ln(1/4F) - 3 + 41 - £2]

3B(1-1)? , 8fD
fBD  BD’ | (80)

Recall that if sliding between the fiber aad the matrix occurs readily, B will be large and

also rapid mass transport is associated with a large value of D.
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It is thought that as the temperature is increased, the relative importance of
sliding and mass transport is enhanced. Thus at low creep temperatures, B/B D and
D/B D3 would be small. Then only the first term on the right hand side of eq. (80) will
be important and when L/D is large, as required by this asymptotic model, the creep
strength will be high. As the temperature is increased, either B/B D or D/B D3 or both
will increase in magnitude. When they become large, h(f} will become small and the
creep strength of the composite will fall, as can be seen in eq. (79). However, if h(f)

becomes negligible, the steady state creep law for the composite will be approximately

£ =Bo/(1-1). (81)

As ir. the case of the quadratic matrix rheology, the creep behavior when sliding
dominates (or as in this new case mass transport is significant) is the same as for a
material containing cylindrical holes instead of fibers even if the interface is nominally
well bonded. This behavior will occur when h(f) is much smaller than (D/L)? so that
the relevant term containing h(f) in eq. (79) is negligible.

It should be noted that the creep behavior is affected in the way predicted by
eq. (79) and (80) whether interface sliding occurs readily or mass transport occurs
rapidly at the interface between the fiber and the matrix. It follows that rapid sliding by
itself is sufficient to diminish the creep strength of the composite material and long
range mass transport at the interface is not necessary. Note also that if the matrix does
not creep (i.e. B = 0) neither sliding nor mass transport will have any effect on creep and
the composite will be rigid. This feature arises because the matrix must deform when
any sliding or mass transport occurs at the interface.

An additional feature is a size effect in the creep law when sliding or mass
transport at the interface are significant enough to affect the composite behavior. A

small diameter fiber (i.e. small D) will tend to enhance the effect of sliding or mass
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transport on the creep rate of the composite and the composite will creep faster.
Similarly, a large diameter fiber will tend to suppress the effect of sliding or mass
transport and the creep strength of the composite will correspondingly be increased.
Similar effects tied to grain size are known to occur in the creep of ceramics and metals
controlled by mass transg ort on the grain boundaries!. Note that the mass transport
term in eq. (80) is much more sensitive to fiber diameter than the sliding term. The
cubic dependence on fiber diameter in the mass transport controlled term will cause it
to disappear rapidly as D is increased. However, if both D and B are substantial, the
creep strength of a composite will not be improved substantially by increase of fiber
diameter until both the effects of sliding and mass transport are suppressed. It seems
likely that in practice this will mean that mass transport will be relatively easy to
eliminate as a contributor to rapid creep strain of the composite by increase of the fiber
diameter, whereas the effect of sliding at a given temperature will be more persistent.
Furthermore, there is also an interplay with volume fraction, with the importance of
interface sliding being greater at low volume fractions of fibers and mass transport

being more significant at higher volume fractions.

Discussion
As previously noted, this chapter has been concerned mainly with those models

for the creep of ceramic matrix composite materials which feature some novelty which
cannot be represented simply by taking models for the linear elastic properties of a
composite and, through transformation, turning the model into a linear viscoelastic one.
If this were done, the coverage of models would be much more comprehensive since
elastic models for composites abound. Instead, it was decided to concentrate mainly on
phenomena which cannot be treated in this manner. However, it was necessary to

introduce a few models for materials with linear matrices which could have been
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developed by the transformation route. Otherwise, the discussion of some novel
aspects such as fiber brittle failure or the comparison of nonlinear materials with linear
ones would have been incomprehensible. To summarize those models which could
have been introduced by the transformation route, it can be stated that the inverse of the
composite linear elastic modulus can be used to represent a linear steady state creep
coefficient when the kinematics are switched from strain to strain rate in the relevant
model.

No attempt has been made to discuss in a comprehensive manner models which
are based on finite element calculations or other numerical analyses. Only some results
of Schmauder and McMeeking1? for transverse creep of power law materials were
discussed. The main reason that such analyses were in general omitted is that they tend
to be in the literature for a small number of specific problems and little has been done to
provide comprehensive results for the range of parameters which would be
technologically interesting - i.e. volume fractions of reinforcements from zero to 60%,
reinforcement aspect ratios from 1 to 105, etc.. Attention was restricted in this chapter to
cases where comprehensive results could be stated. In almost all cases, this means that
only approximate models were available for use. Furthermore, numerical analyses for
creep in the literature tend to be for metal matrix composites and so use creep indices
which are rather high for ceramic matrices. Indeed, this latter fault applies to the finite
element calculations so far performed by Schmauder and McMeeking1® even though
there was an attempt to be comprehensive. Those finite element results which are
available in the literature such as the work by Dragone and Nix24 are very valuable and
provide accurate results for a number of specific cases against which the more
approximate models discussed in this chapter can be checked. A limited amount of this
checking for a single model has been done by McMeeking?23 in comparison with the
Dragone and Nix24 calculations. The results show that the approximate model is

reasonably accurate. However, more extensive checking of the approximate models is
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required and to do this in many cases it will be necessary to create the finite element
analyses.

Also omitted from this chapter was any attempt to compare the models with
experiments. This would require a lengthy chapter by itself and some comparisons are
given elsewhere in this book. In addition, limited data are available for such
comparisons in general. For metals, there are some successful comparisons> and some
unsuccessful ones22. It seems that when there is good knowledge of the material
properties and the operating mechanisms, the right model can be chosen, but lack of
such knowledge makes it virtually impossible to identify which features must be
present in the model. Thus, multidisciplinary work is necessary to understand the
microstructure, to identify the mechanisms and to select and develop the appropriate
model. An example of such an effort, although for the closely related subject of the
plastic yielding of a metal matrix composite, is the work of Evans, Hutchinson and
McMeekingZ3, where careful control of the metallurgy and the experiments was used to

confirm the validity of the models.
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Figure Captions

Fig.1 A uniaxially reinforced fiber composite.

Fig.2 Threshold for long term creep of a uniaxially reinforced composite as a function
of Weibull modulus for the fiber strength distribution.
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ABSTRACT

The creep properties and microstructures of Y -TiAl reinforced with continuous
Al>Oj fibers have been investigated. Novel fiber coating concepts have been used to
create "weak" fiber/matrix interfaces that allow the fibers to impart enhanced creep and
fracture resistance, simultaneously. Several major facets of the creep behavior were
identified. Under conditions of limited fiber fracture, creep-resistant sapphire fibers
were found to limit longitudinal creep to a short transient strain, consistent with model
predictions. At the same time, the interlaminar shear creep properties were found to be
insensitive to fiber reinforcement, again consistent with predictions. It was also
demonstrated that the "weak" interfaces were maintained after creep and resulted in

significant levels of toughening.
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1. INTRODUCTION

Titanium-aluminides have potential as high-temperature structural materials for
aerospace applications. Compared to Ti-based alloys, these materials have superior
elastic moduli and high-temperature strength, as well as improved oxidation and creep
resistance.1, 2 These factors also give Y-TiAl an advantage over 0,-TizAl for high
temperature applications. Two key problems with y -TiAl are its low toughness and
duct.lity below 700°C, as well as inadequate creep strength for a number of proposed
applications. There have been several successful demonstrations of improved
toughness3-6 but more limited assessment of the approaches for enhancing creep
strength. Attempts to improve the creep resistance by solid-solution and particulate
strengthening have only had limited success.7-9 A potentially more powerful approach
involves reinforcing with unidirectional continuous fibers. Such fibers are also capable
of enhancing strength and toughness if the appropriate fiber coating is used.1?

An appreciable literature exists concerning models of the effect of fibers on the
longitudinalll-17 and transverse!8 creep characteristics of unidirectional composites.
However, there have been few experimental studies on systems having practical utility
at elevated temperatures. The principal intent of this study is to quantify the effect of
fibers, and fiber/matrix interface characteristics, on the longitudinal creep of y-TiAl,
and to provide a comparison with models.

In one H.ﬁit, the models suggest that composites with continuous elastic fibers
demonstrate transiem: creep, with a creep strain limited by the elastic deformation of the
fibers.12 When the fibers also creep, the composite will usually be expected to exhibit
steady-state behavior, following an initial transient, subject to a ‘rule-of-mixtures’ creep
rate.12 However, these expectations are modified by fiber failures,13.17 which initiate
tertiary creep and may lead to creep brittleness. In some cases, the presence of a "weak"

fiber/matrix interface may further obviate creep strength by allowing debonding and
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relative sliding between fiber and matrix, either at free surfaces or at prematurely failed
fibers.19

These concepts may be assessed by using two types of alumiiia fiber
reinforcements. (i) Sapphire fibers, which are expected to be essentially elastic up to
~1600°C, when loaded parallel to the c-axis,20 are used to evaluate the elastic fiber
concept. Nove! fiber coating procedures are used to explore the effect of weak
f.ber/matrix interfaces on the composite creep rate.1021 (ii) Fibers consisting of fine
grained polycrystalline Al;03, which should creep noticeably at =1000°C22, provide

information about composite behavior in the piecence of creeping fibers.

2. EXPERIMENTAL
2.1 Materials and Processing

The matrix used in the present study is a 'y -TiAl alloy (Ti—48 Al-2.5 Nb-
0.3 Ta a* %), supplied by Pratt and Whitney as rapidly solidified powder having an
average particle diameter of ~ 120 um. The polycrystalline Al,O3 fibers, produced by a
sol-gel process, supplied by 3M, had a diameter of ~ 15 pm and a submicron grain size.
The sapphire reinforcements, produced by the EFG (edge-defined film-fed growth)
process at Saphikon, Inc.1, had a nominal c-axis orientation and a diameter of ~ 130 um.

Samples with strong interfaces resulted when no coating was applied to the fibers.
Composites with "weak" fiber/matrix interfaces were obrained when the fibers were
suitably coated.21 For the present specimens, the - apphire fibers were coated with
colloidal graphite. Thr ,, to p:event dis<olntion of the graphite into the TiAl matrix, the
fibers were provided wi*h an outer coating of Ai;O3 Densification of the Al,O5 coating

was achieved during a 1300°C vacuum heat treatment, prior to composite consolidation.

1 Milford, NH.
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Composites with fiber coatings were produced by mechanically blending the fibers
and the TiAl powders, and then densifying by hot isostatic pressing (HIP) at 276 MPa
and 1100°C for 2 h. For the sapphire fiber composites, this was achieved using a slurry
prepared with TiAl powders and deionized water, and by utilising the rigidity of the
fibers to facilitate the mixing process. To remove the bulk of the water from the slurry,
the can was first heated to 60°C in air for 48 h. To remove residual moisture, the cans
were evacuated at 350°C for 1.5 h, and then sealed by crimping and welding. The
composites containing polycrystalline fibers were manually fabricated by first stacking
equal-length bundles into Ti cans (sealed at one end) having inner diameter 12 mm and
length 55 mm. Dry TiAl powder was mixed with the fibers in the can. Mechanical
agitation of the can during mixing facilitated powder dispersion. Residual moisture was
again removed under vacuum. Unreinforced TiAl was also produced by HIPing, in
order to provide a reference against which the properties of the composite could be
compared. Fiber volume fractions, f, = 0.15 - 0.25, were achieved for the sapphire fiber
composite after consolidation, (Fig. 1). For the polycrystalline fiber composite, a fiber
volume fraction f = 0.07 was measured after HIPing. Higher fiber volume fractions
were precluded in this material by the occurrence of uneven fiber distributions in the
densified composite.

The composites reinforced with polycrystalline Al;Oj3 fibers were shaped into test
specimens by electro-discharge machining. Rectangular test bars of the sapphire-
reinforced material were produced by a cutting and surface grinding process, using
diamond impregnated wheels. These samples were ground to a 400 grit surface finish.
Beams with reduced central sections were also utilised, (Fig. 2). These specimens were
machined by using a high speed diamond core drill, with a 200 grit size. In the
composites with sapphire fibers, brittle fiber fractures were observed occasionally,
attributed to machining damage. In one case, when the tensile surface was profiled with

the 200 grit diamond core drill (rather than the 400 grit wheel used on rectangular
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beams), substantial fiber fracture occurred, consistent with the deeper scoring resulting

from the larger grit size.
2.2 Creep Measurements

Creep tests were performed in argon (= 0.1 MPa) using a hydraulic testing
machine with a 2200°C temperature capability. The composites were tested in four-
point flexure, with an inner/outer span ratio of 1/2. Initial tests were conducted on
rectangular beams, with cross-section 3x3.5mm. However, large levels of shear
deformation in the outer span led to discontinuities in the curvature of the beam at the
inner loading points, resulting in premature fiber fracture. Enhancing the thickness of
the outer-span (Fig. 2) ameliorated this problem, by reducing the outer span shear
stresses.

Measurements of the axial creep properties were carried out by using a device
which directly and continuously evaluated the (constant) curvature over the inner span
(which experiences a constant moment) by measurement of the displacement A (Fig. 3).

The maximum tensile creep strain € is then given rigorously by,24

e = ha/(a%+s?) D

where h is the beam thickness and s the span (Fig. 3).The device allows strain
measurements accurate to within ¥0.01%, and a resolution of ¥0.0005%. Subsequent
numerical treatment of the data then yields the corresponding strain rate behavior. The
corresponding shear strain rate ¥ in the outer span, when the reinforcing fibers are

elastic (Fig. 4), is®

® Egn. 2is applied to the shear deformation of both rectangular beams, as well as the profiled beams
(Fig. 2). For the latter, the variation in height of the beam in the transition region outside the inncr
loading point may lead to a small additional error.
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7 = 24, fiL-8 2

where Ap is the load-point displacement-rate, L is the outer span and ¢ the inner span.

The stresses that develop in the composite relate to the applied moment through
the longitudinal constitutive properties of the composite. Determining precise values for
the axial and shear stresses during flexural creep is quite straightforward when the
fibers do not creep, and the stresses are substantially below the fiber bundle strength.
The procedures are more involved when the fibers are subject to creep, as summarised
in the Appendices.

Tests on the TiAl matrix were also conducted in uniaxial compression. These tests
were performed in argon, on samples measuring approximately 6 mm in diameter and

12 mm long.
2.3 Fracture Resistance

Fracture resistance measurements were performed, following creep, by using a
chevron-notch, three-point bend technique. Testing was conducted in a hydraulic
testing machine, at room temperature, at a cross-head displacement rate of ~ 100 pm/s.
A stiff loading frame guaranteed stable crack propagation, following initial pop-in.
Fiber push-out tests have also been conducted, before and after creep testing, in order to

evaluate the interfacial sliding stress, 1, as described elsewhere.2123
2.4 Characterization

Various microstructural and microchemical characteristics of the composites have
been established, by using conventional and analytical transmission electron

microscopy (TEM). These studies were conducted in a JEOL 2000 FX instrument,
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equipped with a LINK eXL energy dispersive X-ray spectroscopy (EDS) system with a
high take-off angle detector. Indexing of electron diffraction patterns was conducted
using Desktop Microscopist Software. Thin specimens suitable for TEM were prepared
both by mechanical dimpling followed by either ion beam thinning (5kV/13°) or twin
jet polishing. The latter was carried out in a Fishione Model 110/130 by using 4%
Sulfuric acid /Methanol solution at -15°C and 95 mA. Specimens were also examined by
scanning electron microscopy (SEM), before and after mechanical testing. These studies
were conducted with a JEOL SM840 equipped with a Tracor Northern EDS system.

3. MICROSTRUCTURES
3.1 As-Processed

Microstructural analysis of the TiAl/ Al,O3 composites conducted by using TEM
revealed a Y-TiAl matrix with a = 5 um grain size, insensitive to both the volume
fraction and type of reinforcement. Intragranular carbides (resulting from carbon
contamination during the TiAl powder atomization process) were identified by selected
area diffraction (SAD), as TipAlIC. These were present in small quantities (volume
fraction, f < 0.02), but with a wide size distribution (ranging from < 0.1 to ~ 1 pm)

(Fig. 5). There were no indications of 0i3-TizAl. The grain size of the polycrystalline
AlyOj3 fibers was ~ 0.2 um (Fig. 6a). The sapphire fibers were largely devoid of both
grain boundaries and dislocations (Fig. 6b). In the absence of coatings, bonding between
the matrix and the fibers appeared intimate, with no evidence of reaction zones

(Fig. 6a, b). However, limited interdiffusion occurred. In the polycrystalline fibers, Ti
was evident to a depth of ~ 0.8 um. The extent of the interdiffusion zone was

substantially less for the sapphire fibers (~ 0.2 um).
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In the composites incorporating fiber coatings, a continuous graphitic structure
was evident, with the layers displaying a wavy morphology parallel to the surface of
the fibers. This arrangement, also evident after creep (Fig. 7b), provided a "weak"
interface and low interfacial sliding stresses.1021 Surrounding the graphite was a
continuous, fine grained (= 0.1 um) AlO3 coating, 0.2 - 5 um thick, again, also evident
after creep (Fig. 7a), containing a small amount of residual porosity. No interface
reactions were found. Nor was there evidence of significant levels of interdiffusion

between the fiber, matrix and coating.
3.2 After Creep

The polycrystalline Al;0O3 coatings on the fibers were found to be effective in
preventing the migration of the graphite into the TiAl during creep. This protection is
evident both from the retention of the 200-500 nm graphite layer (even after more than
50 h at 982°C (1800°F)) and the spatial uniformity of the matrix carbide concentration in
the TiAl (Fig. 7a).

However, following creep, several changes in microstructure were evident. Locally
enthanced matrix creep at the fiber breaks in the sapphire fibers produced by machining
resulted in separation of the fiber ends, (Fig. 8b). In the matrix adjacent to a fiber failure,
extensive creep damage was often evident. Such damage provides a mechanism for
creep rupture in the composite. In composites containing polycrystalline fibers, fiber
fractures occurred at regular spacings after a creep strain of ~ 2% (Fig. 8a). The
maximum value of the ratio of crack spacing, ], to crack radius, R, was /R ~ 10. This
spacing occurred close to the tensile surface. The maximum fiber cracking depth was
~ h/3 from the tensile surface. No fiber fractures were found on the compression side.
Cracking appeared to be caused by creep damage coalescence within the fibers (Fig. 9),

similar to that observed for other aluminas.25
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Significant levels of dislocation activity were observed in the ¥ -TiAl, with some
dislocation pinning evident at the intragranular carbides (Fig. 10). Few dislocations

were evident in either the polycrystalline AlyOj or the sapphire fibers.

4. CREEP STRENGTHS
4.1 Axial Creep

Measurements of axial creep at 982°C (1800 F) revealed substantial differences
between the various materials (Figs. 11,14). i) The matrix-only material exhibited
steady-state deformation after a short transient, (Fig. 11), with a power-law exponent,
n = 2.6 ( Fig. 12). ii) The material with the polycrystalline fibers exnibited primary and
steady-state creep, (Fig. 11), with a creep-rate somewhat less than that for the matrix, (at
the same nominal stress). iii) The composites with sapphire fibers exhibited transient
creep (creep-rate diminishing with strain) and a total creep strain ~ 0.15%, (Figs. 11,13).
Unloading at the end of the creep test, while maintaining the temperature, resulted in
reverse creep . These behaviors were similar for both the coated and uncoated fibers, in
the absence of significant fiber fracture. However, when premature fiber fracture
occurred as a result of machining damage, an acceleration in creep was evident,

(Fig. 14).

The axial creep-rate of a composite containing intact continuous, elastic fibers, is

predicted to be transient!2 and,when the matrix experiences power law creep

(equation A2), is given by,

£ = aén [l - (fEf/o)e]n 3)
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where E, is Young's modulus for the fiber, € is the matrix creep-rate at the same

applied stress and @ is a coefficient that depends on f, E;/Ep and n, given by12

a=[ En(1-f) ](1-0'“

For the present composites, (f = 0.15-0.25,n = 2.6, E #/Em =2.8), a = 1.1. Integration of

equation (3) then gives the strain history,

' -1/(n-1)
E = €c "(ec “80){14‘(1"80 /sc)n—l{w
€c )
where € is the strain at which creep stops, given by
g = o/ fE, 6)

A comparison with these predictions of the creep rates measured on the
composites containing coated sapphire fibers (Fig. 13), indicates a slighter higher than
expected creep rate after the first few hours but good agreement, within the accuracy of
the data, after about 15 h. In particular, the limiting creep strain appears well
represented by equation (6). The discrepancy during the early stages is probably caused
by transient stress redistribution effects within the beam, not accounted for in
equation (5). Similar agreement obtains from the initial creep of the composite with
uncoated fibers, prior to fiber failure. This result is of significance because it emphasises
that the presence of a "weak" fiber/matrix interface does not degrade the axial creep

properties of the composite.
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When polycrystalline fiber reinforcements are used, the lower creep strengths, as
well as the attainment of a steady-state deformation, involve both fiber creep and
fragmentation of the fibers. The occurrence of creep in the fibers is consistent with the
extremely fine grain size?2 (< 200nm). However, there is insufficient information to

compare explicitly with models.
4.2 Interlaminar Creep

In the composites reinforced with sapphire fibers, steady-state interlaminar shear
creep is found to occur in the outer span, after a brief initial transient. The shear
deformation of the composite may be compared with that for the unreinforced matrix
by using the equivalent stress and strain as comparators (Appendix II). This comparison
demonstrates that the shear creep rate of the composite and of the unreinforced matrix
are similar (Fig. 12). Consequently, the reinforcing fibers are found to have littie effect
on the shear creep response, consistent with theoretical predictions (Appendix III,

Fig. C2).

5. FRACTURE RESISTANCE

Fracture resistance measurements conducted on the material with coated sapphire
fibers, after creep (Fig. 15), were initially characterised by pop-in, due to unstable crack
propagation from the notch. However, bridging fibers were found to cause crack arrest,
with subsequent pull-out, (Fig. 16b), resulting in significant enhancement of the fracture
resistance. The pull-out contribution to the work-of-rupture is estimated from the area
under the *ail of the load-displacement curve as, Al'p = 2.1 kJur-2. The fiber pull-out
lengths ranged between about 20 - 225 um, with an average value, h=105um. In
contrast, the composite with uncoated sapphire fibers exhibited unstable crack growth,

with no pull-out (Fig. 16a). The frictional sliding stress, characterizing pull-out of the
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coated sapphire fibers, obtained using fiber push-out tests?! was T = 40-50 MPa. The
toughening, AT'p, caused by fiber pull-out is predicted to be26

Y~ w ]
AT =1fh“/R @

where R is the fiber radius, and h= \j aR? E?‘hiz / f, with m being the number of fibers
per unit area. Using the parameters summarised in Table I, the magnitude predicted by
equation (7) is found to be =40% lower than the toughening value determined
experimentally. This discrepancy may be partly due to the bending stresses that occur
in the fibers bridging the crack during pull-out, resulting in additional fiber failure and,
thus, to an underestimation of the true average pull-out length. In addition, bending
may lead to an increase in the effective sliding stress by causing additional compressive

forces normal to the fiber/matrix interface.

6. CONCLUSIONS

The present study has demonstrated for the first time that continuous ceramic fibers
can substantially enhance the longitudinal creep properties of intermetallic matrices, in
the presence of weak fiber/ matrix interfaces, provided that the fibers are strong and
resistant to both creep and creep rupture. In addition, the comparatively high fracture
resistance of Y -TiAl reinforced with coated sapphire fibers critically demonstrates the
feasibility of using continuous fiber reinforcement with weak fiber/matrix interfaces to
simultaneously achieve high uniaxial creep and fracture resistance.

The importance of fiber coatings for both fracture resistance and creep strength has
been vividly demonstrated. Fiber pull-out and toughening have been demonstrated
when coatings are used. It is also shown that double coating techniques can be used to

protect debond coatings during creep.
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The creep properties under shear loading were found to be insensitive to
unidirectional fiber reinforcement, in accordance with predictions, indicating the need

for multidirectional reinforcement under more complex loading conditions.
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APPENDIX I
Axial Stress Redistribution in a Creeping Beam

For a beam subject to elastic bending, the maximum tensile and compressive

stresses, G, are

Ce = (3/2){1’('«-‘)/1’1‘2} (A1)

where L and £ are the length of the outer span and inner span, respectively, P the load
and b the beam width. When the entire body is subject to power law, steady-state creep,
with the strain-rate, € characterized by,

£ = éO(O'/GO)n ‘ (A2)

where O, is a reference stress, €, a reference sain-rate and n the power law exponent,

the maximum stress & in the flexural specimen is?7
6/, = (2n+1)/3n (A3)

The corresponding stress distribution is

oly) _ (2n+1 gz)"“

O 3n Ah (Ad)

where y is the distance from the neutral axis

For matrices reinforced by creeping fibers account must be taken of the
redistribution in moment from the matrix to the fibers. This results in a stress
distibution that is a function of both the fiber volume fraction and the applied load.24
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For the TiAl/polycrystalline Al,O; fiber composite, the fiber volume fraction is low and
the fibers appear to creep with rates similar to the matrix. In this limiting case,
equation (A3) provides a sufficiently accurate representation of the composite stress
distribution. Another limiting case occurs when the fibers are elastic, and not subject to
significant fragmentation. Then, the composite stress during creep is given by
equation (A1). These two well known bounds are used in this study to gain

understanding of the influence of the fibers on creep behavior.
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An interesting situation arises when the composite is reinforced with elastic fibers.
Then, following an initial transient, all axial load is carried by the fibers, resulting in a
linear stress distribution across the beam. Consequently the shear stress distribution is

the same as that for the elastic case.

To compare the composite shear behavior with the matrix creep behavior obtained
in flexure, the stresses and strains are expressed in terms of the equivalent values ¢’ and

strains €, by using

1/2
5 = ( 1 ) (6 = 6z) + (05— 02)" +(0y — 63)’ ] -
V2 +6(0%, + 0% +0%) |
and
2 2 2 2
g = (__‘\/2] (ell - e22) + (833 = ezz) + (eu - 813) (B5)
3 +6(el, + €3, + €3,)

where O, and &, refer to the normal stresses and strains, respectively. In shear, ¢’ = \3
Tand€ =Y /\/5, whereas, in flexure, ' = Gand € = 2€/2.
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APPENDIX I1

Shear Stress Redistribution in a Creeping Beam

The maximum shear stress 7 in four-point flexure occurs at the mid-beam height in

the outer-span region. For a monolithic elastic beam in four-point flexure, this stress is?3
t = 3P/4bh (B1)

where P is the applied load, and b a.d h are the beam width and height, respectively.
When creep occurs 2~ “rding to equation (A2) there is a redistribution in shear

stress across the height of the beam. The magnitude of the shear stress can be

determined from equilibrium, by integrating the imbalance in axial stress, Ao, across an

element of width dx, over the height of the beam,

‘- jg Acdy
T dx (B2)

For non-linear creep, Ac is found from the axial stress distribution given by
equation (A4). The maximum shear stress normalised by the corresponding elastic

stress, 1o, is then

T [4n+2)
Te 3n+3 (B3)

This result shows that non-linear creep results in a magnification of the maximum shear

stresses.
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- 1
Te/Tm = é(l n)/nJ’O

{&— 1—22}”]/nd§+(1-1/§)

The results of the numerical integration of equation (C4) for different values of the
matrix creep exponent, n, (Fig. C2) indicate that, for materials characterised by a hizh
creep exponents, the fibers have little effect on the creep behavior when the volume
fraction, f < 0.4. These predictions are consistent with the shear creep behavior of the

TiAl/sapphire composite (f = 0.15-0.25 and n = 2.6), Fig. (C2).
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FIGURE CAPTIONS

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
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Scanning electron micrographs of the y -TiAl/sapphire composite: transverse
section.

Modified four-point flexure sample, with reduced center section to minimise
fiber damage.

Schematic of the method used to measure bending deflections during creep.
Schematic of interlaminar shear creep during flexure.

Transmission electron micrograph of the matrix in as-processed y-TiAl,
indicating the Ti;AlC precipitates.

TEM micrograph of the fiber (f)/matrix (m) interface region (shown arrowed)
iny-TiAl reinforced with a) polycrystalline Al20O3 b) sapphire.

TEM micrograph of the fiber/matrix interface region in ¥TiAl reinforced with
coated sapphire fibers after creep at 982°C (1800°F) for 50 h, a) overview, bj
detail of region outlined in (a). Diffraction pattern shows the TiAl [011] zone
axis, recorded next to the interface. (M, matrix: S, saphire fiber: A, Al;O3
coating: C, carbon coating)

TEM micrographs of ¥ -TiAl matrices with AlyO3 fibers a) multiple cracking in
polycrystalline fibers, b) fracture in sapphire fiber (arrowed).

Evidence for creep crack growth in polycrystalline Al;O3 fibers.

Transmission electron micrographs of unreinforced Y -TiAl after creep,
a) bright-field and b) weak beam dark-field.

Comparison of the creep behavior between matrix and composites.

Steady-state composite creep under interlaminar loading in TiAl/sapphire at
982°C (1800°F) plotted as equivalent stresses ar.d strain-rates. Also shown are
compression (c) and flexural (f) creep rates for the matrix.




Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig.C1.

Fig. C2.

CHWII-12/92

Comparison of TiAl/sapphire creep data with model at 982°C (1800°F) and a
nominal applied stress of 75 MPa.

Transition to 'steady-state’ creep after onset of fiber fracture in TiAl/sapphire,
containing uncoated damaged fibers.

Work-of-fracture data for TiAl/sapphire after creep.

a) No fiber pull-out in TiAl/sapphire for strongly bonded interfaces.
b) Weakened interfaces result in substantial levels of pull-out.

Unit-cell model for the interlaminar shear creep behavior of continuous fiber
composites.

Comparison